

背景なぜ木材に防火処理が必要なのか?

建物火災の発生件数推移と死亡原因

出典:平成13年版~平成23年版 消防白書(総務省 消防庁HP)

防火材料の種類と要求性能(建築基準法)

防火材料の区分		難燃材料	準不燃材料	不燃材料			
使用可能な部位		壁(床面から高さ1.2m以上), 天井 屋根					
要求性能		①燃焼しない ②防火上有害な変形、溶融、亀裂その他の損傷を生じない ③避難上有害な煙またはガスを発生しない					
要求時間		5 分間	1 0 分間	2 0 分間			
発 熱 性 試 験	試験方法	 IS05660-1 発熱性試験(コーンカロリーメーター試験) 試験体10cm×10cm ・輻射熱強度50kW/m² 					
	加熱時間	要求時間に対応					
	判定基準	①総発熱量が8MJ/m ² 以下 ②防火上有害な裏面まで貫通する亀裂・穴が発生しないこと ③最高発熱速度が10秒以上継続して200kW/m ² を超えないこと					
ガ ス 有害性 試 験	試験方法	・試験体の燃焼ガスを検査箱へ供給し、検査箱内それぞれの 回転かごに入れたマウス8匹の行動を観察 ・試験体22cm×22cm					
	判定基準	マウス8匹の平均行動停止時間が6.8分以上					
主な材料		難燃合板 (厚さ5.5mm以上)石膏ボード (厚さ7mm以上)	・木毛セメント板 (厚さ15mm以上)・石膏ボード (厚さ9mm以上)	・コンクリート ・ガラス ・鉄 ・瓦			

研究目的

【課題】

- 防火材料「仕様規定」→「性能規定」=技術開発
- 県産スギ内装材の準不燃化処理技術は未確立
- ヒトの健康に対する安全性は不明

【目的】

県産スギ材の**安全・安心な準不燃化処理技術**の確立

スギ内装材の高付加価値化による新たな需要の創出

研究項目

- 薬剤の選定と
 発熱性試験
- 2. 白化を防止する 塗装方法の検討

スギ準不燃材料の開発

- 3. 薬液の安全性
- 毒性スクリーニング試験ー
- 4. スギ準不燃材料 の安全性
 - ーヒトパッチテストー

研究1 薬剤の選定と発熱性試験

●薬剤選定基準:防火性能,薬液の安定性

●試験体:スギ材

厚さ1.5×幅10×長さ10(cm)

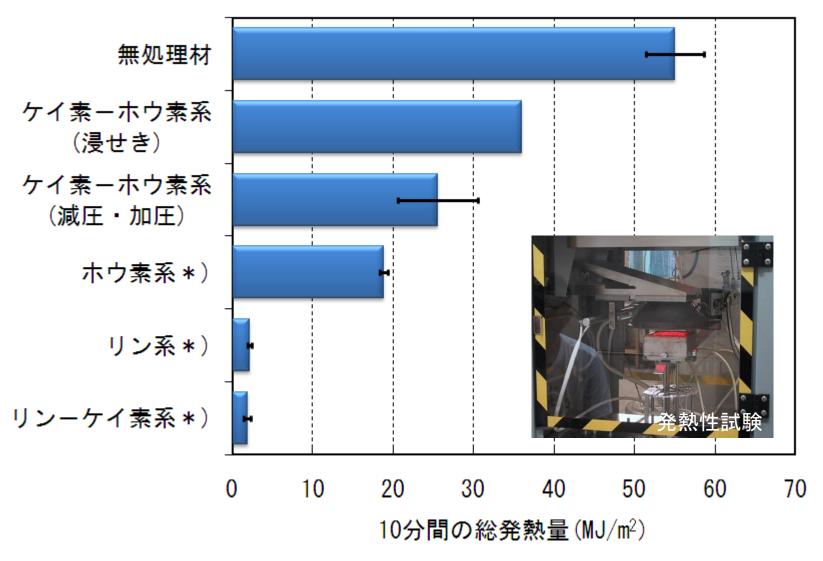
●薬液注入:減圧・加圧法

●発熱性試験の実施:

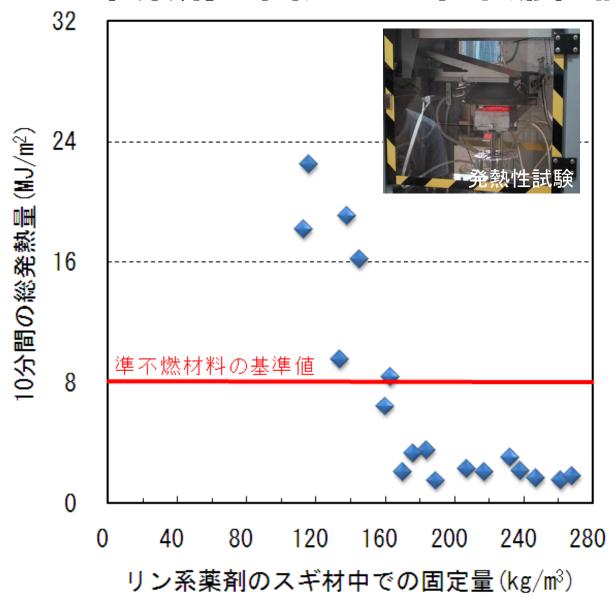
(独)森林総合研究所 木材保存研究室

(財)建材試験センター 西日本試験所

①薬剤の検討と薬液の調製


②薬液の注入及び試験体の乾燥

③コーンカロリーメーターによる発熱性試験



研究1 様々な薬剤による準不燃性能の比較

*):薬液の注入方法は「減圧・加圧」法エラーバー:標準偏差(試験体数は1~6体)

研究1 リン系薬剤の固定量と準不燃性能との関係

研究2 白化を防止する塗装方法の検討

●白化発生の原因:吸放湿

●防火材料の塗装:「防火材料の認定仕様」以外は認められない

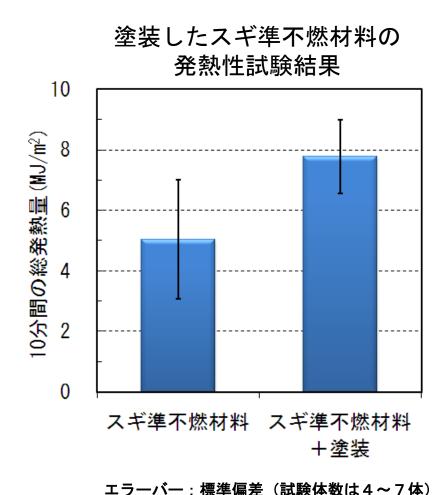
 \downarrow

【塗装方法の検討】

●塗料選定基準:必要な塗布回数と量
準不燃材料(薬剤)との相性

●塗布方法:スプレーガン

●塗布回数:2~3回


●塗装方法の検討・実施: 寺戸工業(株)(益田)大阪塗料工業(株)(大阪) 白化が生じてしまった天井

研究2 塗装後のスギ準不燃材料の性能

- ●ウレタン樹脂塗料
- ●含水率の管理(10~12%)
- ●素地研磨
- ●膜厚の管理(塗布量60g/m²×3回)
- ●塗装環境(温湿度)
- ●原則 工場塗装

研究3 薬液の安全性ー毒性スクリーニング試験ー

- ●急性経口毒性(誤飲の影響)
 - ・・・ラット(5匹)に薬液を経口投与(2000mg/kg)。2週間の経過観察後に剖検。
- ●皮膚刺激性(皮膚接触の影響)
 - ・・・ウサギ(3匹)の背部を刈毛し、薬液0.5mLを拡げたリント布を4時間貼り付け。 除去後1,24,48及び72時間毎に観察。
- ●眼刺激性(眼への影響)
 - ···ウサギ(3匹)の片眼に薬液0.1mLを投与。投与後1,24,48及び72時間毎に観察。
- ●皮膚感作性(アレルギー性)
 - ・・・マウス(4匹)の両耳介の背面それぞれに薬液25μLを3日間塗布。1週間の観察後、耳下リンパ節を摘出して調査。
- ●復帰突然変異性(発ガン性)
 - ・・・・ ネズミチフス菌株に薬液投与。復帰変異コロニー数の増加を調査。
- ●試験の実施:(財)食品農医薬品安全性評価センター(静岡)

研究3 薬液の安全性評価の結果

項目	結果	安全性
急性経口毒性	死亡や諸器官の異常はなく体重も順調に増加	0
皮膚刺激性	皮膚への刺激性・腐食性はなし	0
眼刺激性	眼への刺激性・重篤な損傷性はなし	0
皮膚感作性	リンパ節に重量変化はなく皮膚感作性物質でない	0
復帰突然変異	遺伝子突然変異の誘発性は陰性	0

研究4 スギ準不燃材料の安全性ーヒトパッチテストー

●試験品:スギ準不燃材料

スギ材(無処理)

●被験者:20歳~60歳以下の日本人

(男性6名,女性14名)

●観察場所:背部に24時間貼付

●判定:剥離60分後,24時間後

●パッチテストの実施:(株)SOUKEN(東京)

②微粉末を充填したパッチテープ貼付

①スギ準不燃材料の微粉末化

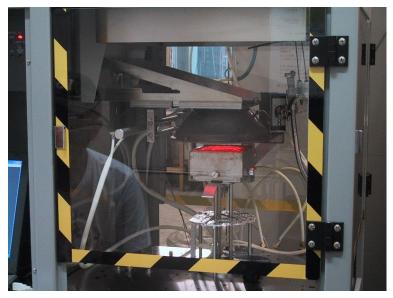
③剥離後. 医師による判定

研究4 スギ準不燃材料の安全性評価の結果

	剥離後の判定結果(人)						皮膚	
試 験 品	60分後			24時間後			刺激	安全性
	陰性	弱陽性	陽性	陰性	弱陽性	陽性	指数	
スギ準不燃材料	20	0	0	20	0	0	0.0	0
スギ材(無処理)	20	0	0	20	0	0	0.0	0
生理食塩水	19	1	0	20	0	0	2.5	
白色ワセリン	20	0	0	20	0	0	0.0	

まとめ 県産スギ準不燃材料の開発

- ●一般的なリン系薬剤を使用した 県産スギ材の準不燃化処理技術を 確立
 - →発熱性試験において10分間の総発熱量が 8 MJ/m²以下



- ●調製した薬液及びスギ準不燃 材料はヒトの健康に対しても 安全
 - →毒性スクリーニング試験及びヒトパッチテスト において安全性を確認

今後の課題 大臣認定取得と工場生産技術の構築

①国土交通大臣による防火材料 認定への申請・取得

- ●気乾密度,薬剤固定量の管理
- ●塗料の膜厚管理
- ●製造手法の確立(密度, 含水率の測定)
- ●性能試験(発熱性、ガス有害性)

②工場レベルで一定品質を保つ 生産技術の構築

