島根原子力発電所地下構造評価について（コメント回答）

平成27年3月6日
中国電力株式会社

No．	指摘事項	審査会合	頁
1	3号地盤についても2次元地下構造モデルによる検討を行い，傾斜 構造による影響を検討すること。	第106回審査会合 （平成26年4月16日）	44～121
2	2次元地下構造モデルを用いた検討における入射角の設定方法に ついて説明すること。	第164回審査会合 （平成26年11月21日）	52,60
3	文献に基づき設定している地下構造モデル深部の減衰定数につい て，設定根拠を說明すること。	第164回審査会合 （平成26年11月21日）	146

1．概要 3
2．敷地及び敷地周辺の地質•地質構造の調査 5
3．観測記録及び物理探査に基づく検討 22
4．地下構造モデルの検討 44
5．地震動評価に用いる地下構造モデルの設定 142
6．まとめ 151
参考 156

1．概 要

（a）敷地及ひ敉地周辺の地質•地質構造の調査

－敷地及び敷地周辺の地質図，ボーリングデータ等を調査

（b）钼剆記録及び物理探査に基づく検討

（1）原子炉建物基礎上端の地震観測記録を比較
（2）敷地地盤の地震観測記録を用い，到来方向による増幅特性等 の傾向を確認
（3）敷地地盤の微動観測記録を用い，空間分布による増幅特性の傾向を確認
（4）物理探査（大深度ボーリング，PS検層，反射法探査，オフセットVSP探査，微動アレ探査）により，敷地及び敷地周辺の地下構造を把握

○地下構造モデルの検討

敷地の南北方向の地下構造は北に緩やかに傾斜していると考え られるため，傾斜構造を考慮した2次元地下構造モデルを用い， その影響を解析的に検討
－上記の検討を踏まえ，敷地地盤の物理探査結果及び地震観測記録等に基づき，敷地の地下構造モデル（地盤減衰含む）を設定

（d）地震動評価に用いる地下構造モデルの設定

－©で設定した地下構造モデルに基づき，敷地の地震動評価に用 いる地下構造モデルを設定
－設定した地下構造モデルと微動アレイ観測結果の位相速度の比較により，設定した物性値の妥当性を確認
－設定した地下構造モデルと2次元地下構造モデルの地盤増幅特性の比較により，設定した減衰定数の保守性を確認

《調査結果＠》

－地質•地質構造の調査より，敷地の東西方向の地下構造は水平成層 で，南北方向の地下構造は北に緩やかに傾斜していると考えられる

```
/<検討結果 (b)》
    - 地震観測記録及び微動観測記録に基づく検討より, 各観測点の地盤
\ 増幅特性に違いはなく, 敷地の地下構造は特異な構造ではないと考
    えられる
*物理探査に基づく検討より,東西方向の地下構造は水平成層構造で
    あり, 南北方向の地下構造は北に傾斜していると考えられる
```

,《検討結果(c)
-2次元地下構造モデルを用いた検討より, 南北方向の傾斜構造が敷
地の地震動評価に与える影響はほとんどないことを碓認できたこと
から, 南北方向の地下構造は水平成層構造で近似できると考えられ
る(結果的に保守的な評価となる)
-検討結果(a) (b)及び上記検討結果より, 敷地の地震動評価に用い
る地下構造モデルは, 東西•南北方向ともに水平成層構造と仮定し
て問題ないと考えられるため, 各観測点の地震観測記録等に基づき

- 1次元地下構造モデルを設定
!《検討結果(d)
 - ©で設定した1次元地下構造モデルに基づき, 敷地全体の地震動を
安全側に評価できるように, モデルの物性値及び減衰定数を安全側
に設定して, 敷地の地震動評価に用いる地下構造モデルを設定
-設定した地下構造モデルと微動アレイ観測結果の位相速度が同程
度となることから, 設定した物性値は妥当と考えられる
-設定した地下構造モデルの地盤増幅特性は, 傾斜構造を考慮した
2次元地下構造モデルの地盤増幅特性と比較して同程度またはそ
れ以上となることから, 安全側に設定した減衰定数が保守的である
ことを確認

2．敷地及び敷地周辺の地質•地質構造の調査

2．敷地及び敷地周辺の地質•地質構造の調査

敷地周辺陸域の地形

■ 敷地周辺陸域は島根県の北東部に位置し，北側は日本海に面し，南側は中国山地の北縁部に接する。
■ 敷地周辺陸域の地形は，その特徴から，島根半島主部，大社山塊，宍道湖•中海低地帯及び宍道湖南方地域に大別される。

2．敷地及び敷地周辺の地質•地質構造の調査

敷地周辺陸域の地質•地質構造（文献調査）

■ 島根原子力発電所が位置する島根半島主部及び大社山塊には，成相寺層などの新第三系中新統が分布し，東北東一西南西方向に軸を持つ褶曲構造が認められる。
■ 宍道湖•中海低地帯には，第四系が広く分布し，中海では第四紀更新世に噴出した大根島玄武岩が分布する。
■ 宍道湖南方地域には，白亜紀後期火山岩類と古第三紀に貫入した花崗岩類が広く分布し，新第三系 が宍道湖中海低地帯の南岸に分布する。
■ 島根原子力発電所は，大局的には背斜構造の北翼に位置し，新第三紀中新世の成相寺層が日本海側に傾斜している。

2．敷地及び敷地周辺の地質•地質構造の調査
敷地周辺陸域の地質•地質構造（文献調査：深層ボーリング調査位置図）
■ 島根半島及びその周辺において，深層ボーリングが10本実施されている。
■ このうち，島根原子力発電所が位置する島根半島主部では，松江市島根町加賀別所（1）において，延長約 1100 m の深層ボーリングが実施されている。

2．敷地及び敷地周辺の地質•地質構造の調査
 敷地周辺陸域の地質•地質構造（文献調査：島根半島主部における深層ボーリング柱状図）

■ 松江市島根町加賀別所では，標高約 -900 m 以深まで成相寺層の分布が認められる。

2．敷地及び敷地周辺の地質•地質構造の調査

敷地周辺陸域の地質•地質構造（文献調査：5万分の1地質図）

■ 鹿野•吉田（1985）${ }^{(2)}$ 及び鹿野•中野（1986）${ }^{(3)}$ によると，敷地付近には新第三紀中新世の成相寺層 が広く分布し，敷地の南方には，ほぼ東西方向の軸を持つ褶曲構造が示されており，成相寺層の層厚は 1200 m 前後とされている。敷地は背斜構造の北側に位置し，成相寺層は $10 \sim 20^{\circ}$ 北に傾斜している。
■ 地質断面図から想定される成相寺層の下面深度は概ね標高－1000m程度と推定される。

2．敷地及び敷地周辺の地質•地質構造の調査
 敷地周辺陸域の地質•地質構造（文献調査結果のまとめ）

■ 深層ボーリング調査結果では，敷地から約 8 km 東方の松江市島根町加賀別所での成相寺層下面は標高約－900m以深であり，鹿野•吉田（1985）${ }^{(2)}$ 及び鹿野•中野（1986）${ }^{(3)}$ による地質断面図とも概ね整合的である。
■ 敷地において推定される成相寺層の下面は，標高－ 1000 m 以深と考えられる。

2．敷地及び敷地周辺の地質•地質構造の調査

敷地地盤の地質•地質構造（敷地地盤の位置関係）

■ 敷地は1－2号炉が位置するエリアと3号炉が位置するエリアに分かれ，それぞれでボーリ ング調査及び地震観測を行っており，前者を「2号地盤」，後者を「3号地盤」とする。

2．敷地及び敷地周辺の地質•地質構造の調査

敷地地盤の地質•地質構造（地質調査）

■ 敷地地盤の地質は，新第三紀中新世の堆積岩類から成る成相寺層と貫入岩類及びそれらを覆う第四紀の崖錐堆積物等から構成される。
■ 敷地は，ほぼ東西方向の軸を持つ背斜構造の北側に位置し，敷地地盤を構成する成相寺層は，北に約 $10 \sim 20^{\circ}$ の緩い角度で傾斜している。

2．敷地及び敷地周辺の地質•地質構造の調査

敷地地盤の地質•地質構造（速度層断面図作成）

■ 速度層断面図は，2号及び3号地盤ともに，主として原子炉建物クロスライン上のボーリ ング孔におけるPS検層結果に基づき，以下のフローに示すとおり作成している。

速度層断面図作成フロー
－\quad PS検層
\Rightarrow ダウンホール法（陸域）及びサスペンション法 （海域）によるPS検層を実施。

■速度層境界の設定
\Rightarrow 原子炉建物クロスライン上のPS検層の走時曲線より，勾配変化が認められる位置に速度層境界を設定。2号地盤は6層，3号地盤は7層 に区分。

■各層の速度値の設定 ${ }^{*}$
$\Rightarrow 2$ 号炉及び 3 号炉の原子炉建物範囲のボーリ ング孔におけるPS検層結果に基づき，各層の速度値（代表値）を設定。

■速度層断面図
\Rightarrow 上記の速度層境界，速度値に基づき速度層断面図を作成。PS検層範囲外については，敷地 の岩相区分及び岩級区分を参考に，各速度層 の境界を延長し作成。
※ 設定方法については参考1（P158～）に示す

2．敷地及び敷地周辺の地質•地質構造の調査
 敷地地盤の地質•地質構造（PS検層実施箇所）

2．敷地及び敷地周辺の地質•地質構造の調査
敷地地盤の地質•地質構造（2号地盤の速度層断面図：南北断面）
■ 2号地盤の南北断面における速度層区分より，2号地盤の南北方向の地下構造は北に緩やかに傾斜していると考えられる。

2．敷地及び敷地周辺の地質•地質構造の調査
敷地地盤の地質•地質構造（2号地盤の速度層断面図：東西断面）
■ 2号地盤の東西断面における速度層区分より，2号地盤の東西方向の地下構造はほぼ水平成層であると考えられる。

2．敷地及び敷地周辺の地質•地質構造の調査
敷地地盤の地質•地質構造（3号地盤の速度層断面図：南北断面）
■ 3号地盤の南北断面における速度層区分より，3号地盤の南北方向の地下構造は北に緩やかに傾斜していると考えられる。

2．敷地及び敷地周辺の地質•地質構造の調査
敷地地盤の地質•地質構造（3号地盤の速度層断面図：東西断面）
■ 3号地盤の東西断面における速度層区分より，3号地盤の東西方向の地下構造はほぼ水平成層であると考えられる。

地質•地質構造の調査のまとめ

■ 敷地周辺及び敷地近傍の地質調査結果より，敷地付近には第三紀中新世の成相寺層 が分布し，北（日本海側）に傾斜している。
■ 文献調査等の結果より，敷地付近の成相寺層は，標高約 -900 m 以深まで分布するもの と推定される。
－敷地内の地質調査結果より，敷地は，ほぼ東西方向の軸を持つ背斜構造の北側に位置 し，敷地地盤を構成する成相寺層は北に緩やかに傾斜している。
■ 2号及び3号地盤の速度層区分より，敷地の東西方向の地下構造はほぼ水平成層であ り，南北方向の地下構造は北に緩やかに傾斜していると考えられる。
$>$ 以上の検討結果から，敷地の地下構造としては，硬質な成相寺層が敷地の地下深部 まで十分な拡がりをもって分布しており，東西方向はほぼ水平成層であり，南北方向は北に緩やかに傾斜していると考えられる。

3．観測記録及び物理探査に基づく検討
（1）原子炉建物基礎上端の地震観測記録による検討
各号炉の原子炉建物基礎上端の地震観測記録を用い，それぞれの建物の応答を比較する。なお， 1 ～3号炉原子炉建物のうち， 1 号炉と 2 号炉原子炉建物は隣接して いるので2号炉原子炉建物で代表させ，検討においては2号炉と3号炉原子炉建物基礎上端の地震観測記録を用いる。
（2）敷地地盤の地震観測記録による検討
敷地の地盤系の地震観測点としては，2号及び3号観測点の 2 地点があるため，各観測点の地震観測記録を用い，地震波の到来方向による増幅特性の傾向を確認する。 また，各観測点の解放基盤表面におけるはぎとり波を比較し，増幅特性の傾向を確認 する。
（3）敷地地盤の微動観測記録による検討
敷地地盤の微動観測記録を用い，敷地内の空間分布による増幅特性の傾向を確認する。
（4）反射法探査及びオフセットVSP探査による検討
敷地内において反射法探査及びオフセットVSP探査を実施し，敷地地盤の地下構造の反射面や速度構造を把握する。
（5）微動アレイ探査による検討
敷地及び敷地周辺において微動アレイ探査を実施し，敷地及び敷地周辺地盤の速度構造を把握する。

3．観測記録及び物理探査に基づく検討

（1）原子炉建物基礎上端の地震観測記録による検討（検討対象地震）

■ 2号炉及び3号炉原子炉建物基礎上端の地震観測記録のうち，最大加速度が $1 \mathrm{~cm} / \mathrm{s}^{2}$以上で，各建物で同時に観測された4地震を検討対象とした。

地震計設置位置

検討対象地震の震央分布

検討対象地震の諸元

No．	年月日	時刻	震央位置	M	$\substack{\text { 震源深さ } \\(\mathrm{km})}$	$\underset{\left({ }^{\text {方 }} \text { 位角 }\right.}{ }$		水平最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	
								2号	3号
1	2011．6． 4	01：57	島根県東部	5.2	11	212	80	2.1	2.1
2	2011．11．21	19：16	広島県北部	5.4	12	187	81	2.6	1.5
3	2011．11．25	04：35	広島県北部	4.7	12	187	80	1.2	1.7
4	2013．4． 13	05：33	淡路島付近	6.3	15	126	86	1.8	1.8

3．観測記録及び物理探査に基づく検討

（1）原子炉建物基礎上端の地震観測記録による検討（地震計設置位置）

■ 2号炉及び3号炉原子炉建物基礎上端の地震計設置位置を以下に示す。

2号炬原子炬建物概略平面

2号炉原子炉建物概略断面

3．観測記録及び物理探査に基づく検討

（1）原子炉建物基礎上端の地震観測記録による検討（観測記録：No． 1 地震）

■ 2011年島根県東部の地震（M5．2）の観測記録の応答スペクトルは同程度である。

3．観測記録及び物理探査に基づく検討

（1）原子炉建物基礎上端の地震観測記録による検討（観測記録：No．2地震）

■ 2011年広島県北部の地震（M5．4）の観測記録の応答スペクトルは同程度である。

3．観測記録及び物理探査に基づく検討

（1）原子炉建物基礎上端の地震観測記録による検討（観測記録：No．3地震）

■ 2011年広島県北部の地震（M4．7）の観測記録の応答スペクトルは同程度である。

3．観測記録及び物理探査に基づく検討

（1）原子炉建物基礎上端の地震観測記録による検討（観測記録：No．4地震）

■ 2013年淡路島付近の地震（M6．3）の観測記録の応答スペクトルは同程度である。

3．観測記録及び物理探査に基づく検討

（2）敷地地盤の地震観測記録による検討（地震観測点）

－敷地地盤の地震観測点としては，2号観測点のA地点と3号観測点のB•C地点がある。 そのうちB地点については，3号建設時に撤去しているので，現在はA地点とC地点の 2地点で地震観測を行っている。

地震観測点

地震計設置位置•観測期間

0 ：地震計

※1 2007年6月歓測開始
$※ 2$ 新第三紀中新世の堆積岩

3．観測記録及び物理探査に基づく検討

（2）敷地地盤の地震観測記録による検討（到来方向別：2号）

■ M5以上の内陸地殻内地震の観測記録（標高 +10 m ）に基づき評価した水平／上下スペク トル比（以下「 H／Vスペクトル比」という。）を到来方向別に比較すると，検討対象地震の到来方向は東と南の2方向となり，方向別で顕著な差異は見られない。

検討対象地震

No．	年月日	時刻	震央地名	$\begin{array}{\|l} \text { 深さ } \\ (\mathrm{km}) \end{array}$	M	$\begin{gathered} \text { 震央距離 } \\ (\mathrm{km}) \end{gathered}$	方位角 （ ${ }^{\circ}$ ）	入射角 （ ${ }^{\circ}$ ）
1	1989．10．27	07：41	鳥取県西部	13	5.3	45.7	131	74
2	1989．11．2	04：57	鳥取県西部	15	5.5	45.9	132	72
3	1991．8． 28	10：29	島根県東部	13	5.9	29.2	143	65
4	1997． 6.25	18：50	山口•島根県境	8	6.6	171.8	225	87
5	1997．9． 4	05：15	鳥取県西部	9	5.5	45.7	131	79
6	2000．10． 6	13：30	鳥取県西部	9	7.3	43.2	132	78
7	2000．10． 8	13：17	鳥取県西部	7	5．6	45.8	162	82
8	2000．10． 8	20：51	鳥取県西部	8	5.2	33.7	123	76
9	2002． 9.16	10：10	鳥取県東部	10	5． 5	69.7	105	82
10	2011．6． 4	01：57	島根県東部	11	5.2	57.2	212	80
11	2011．11．21	19：16	広島県北部	12	5.4	74.3	187	81

H / V スペクトル比（A地点：標高＋10m）

3．観測記録及び物理探査に基づく検討

（2）敷地地盤の地震観測記録による検討（到来方向別：3号）

■ M5以上の内陸地殻内地震の観測記録（B地点：標高＋8m，C地点：標高＋8．5m）に基づ き評価したH／Vスペクトル比を到来方向別に比較すると，検討対象地震の到来方向は東と南の2方向となり，方向別で顕著な差異は見られない。

No．	年月日	時刻	震央地名	$\begin{array}{\|l} \text { 深さ } \\ (\mathrm{km}) \end{array}$	M	$\underset{\substack{\text { 震央距離 } \\(\mathrm{km})}}{ }$	方位角 （ ${ }^{\circ}$ ）	入射角 （ ${ }^{\circ}$ ）
6	2000．10． 6	13：30	鳥取県西部	9	7.3	43.2	132	78
7	2000．10． 8	13：17	鳥取県西部	7	5.6	45.8	162	82
8	2000．10． 8	20：51	鳥取県西部	8	5.2	33.7	123	76
9	2002．9．16	10：10	鳥取県東部	10	5.5	69.7	105	82
10	2011．6． 4	01：57	島根県東部	11	5.2	57.2	212	80
11	2011．11．21	19：16	広島県北部	12	5.4	74.3	187	81

[^0]3．観測記録及び物理探査に基づく検討

（2）敷地地盤の地震観測記録による検討（はぎとり波の比較）

■ 2号観測点（A地点）及び3号観測点（B地点）における2000年鳥取県西部地震の地震観測記録に基づき，解放基盤表面（標高－10m）におけるはぎとり波※を求めると，応答 スペクトルは同程度である。

3．観測記録及び物理探査に基づく検討

（3）敷地地盤の微動観測記録による検討（微動観測点）

■ 発電所敷地内の 13 箇所（ 200 m 間隔）で微動観測を実施し，その観測記録に基づき評価 したH／Vスペクトル比の空間分布を確認した。

微動観測点（13箇所）
：微動観測点

3．観測記録及び物理探査に基づく検討

（3）敷地地盤の微動観測記録による検討（評価方法）

－H／Vスペクトル比の評価方法

（1）観測時間は1地点につき60分間。
（2）観測波形から目視によりノイズの影響の小さい区間 （約164秒）を10波程度選定。
（3）各区間ごとにフーリエ変換（スムージング：Parzen ウィンドウ 0.05 Hz ）を行い， H / V スペクトル比を算定。

- — H / V スペクトル比（10波程度）
- —平均 H / V スペクトル比

H／Vスペクトル比
加速度計の仕様

センサー部	
センサー形式	サーボ型加速度計
測定レンジ	$\pm 4 \mathrm{G}$
データ収録部	
チャンネル数	3ch （水平2成分，上下1成分）
周波数帯域	$0.1 ~ 200 \mathrm{~Hz}$
A／D コンバータ	$32 ヒ ゙ ッ ト ~$
サンプリング 周波数	100 Hz

加速度計の周波数特性

3．観測記録及び物理探査に基づく検討

（3）敷地地盤の微動観測記録による検討（各観測点の評価結果）

■ 0．25秒以下の短周期側は表層（盛土•埋土）の影響により若干違いはあるが， 1 秒以上の長周期側は一様にフラットであり，敷地内の深部構造に大きな違いはないと考えられる。

観測点（10）

観測点 ${ }^{(7)}$

観測点 8 8

観測点（2）

3．観測記録及び物理探査に基づく検討
（3）敷地地盤の微動観測記録による検討（表層の影響の検討）
■ 短周期側に見られる表層（盛土•埋土）の影響を確認するため，観測点（1），（2）において微動アレイ探査を実施して深さ 30 m 程度までのS波速度構造を求めると，深さ 10 m 程度 までの表層にはVs＝ $250 \mathrm{~m} / \mathrm{s}$ 程度の層が分布している。
■ 微動アレイ探査により求めたS波速度構造による理論H／Vスペクトル比と，観測H／V スペクトル比を比較すると，同様の傾向を示しており，短周期側のピークは表層（盛土•埋土）の影響によるものと考えられる。

微動アレイ探査観測点

微動アレイ探査配置図（L字型配置）

周期（s）
理論 H / V スペクトル比と観測 H / V スペクトル比の比較

（4）反射法探査及びオフセツトVSP探査による検討（概要）

■ 敷地内において反射法探査及びオフセットVSP探査を実施し，地下構造の反射面や速度構造を把握する。なお，オフセットVSP探査の実施にあたり，深度 1200 m の大深度 ボーリングを実施した。
■ 反射法探査及びオフセットVSP探査（Vertical Seismic Profiling：鉛直地震探査）は，地表で人工的に地震波を発生させ，その地震波を前者は地表面，後者はボーリング孔内で収録し，収録波形に基づき地盤の境界深度や傾斜構造を把握する調査方法である。

反射法探査及びオフセットVSP探査

3．観測記録及び物理探査に基づく検討

（4）反射法探査及びオフセットVSP探査による検討（解析断面）

■ 深度 1200 m の大深度ボーリング孔を曻中心とした南北方向と，大深度ボーリング孔から 2号炉方向へ伸びる東西方向でオフセットVSP探査を実施した。また，南北•東西方向 の構内道路沿い（2測線）で反射法探査を実施した。

反射法探査及びオフセットVSP探査の解析断面

3．観測記録及び物理探査に基づく検討

（4）反射法探査及びオフセットVSP探査による検討（検討結果：東西方向）

■ 東西方向の反射面は地下深部までほぼ水平に連続しており，特異な構造は見られない。
■ 深度 1200 m までの P 波速度は $V p=3.5 \sim 5 \mathrm{~km} / \mathrm{s}$ 程度であり，低速度域は見られない。

深度（m）

3．観測記録及び物理探査に基づく検討

（5）微動アレイ探査による検討（アレイ配置及び評価結果）

－敷地及び敷地周辺における微動アレイ探査（西側•東側アレイ）により，速度構造を推定した。
■ それぞれのアレイにおける速度構造の同定結果を比較すると，概ね同程度の深さに同程度 の速度層が分布している。

観測点		底辺長 （km）	標 高 （m）							
西 側	L1アレイ	2.0	L1－1	71	L1－2	129	L1－3	1	L1－4	148
	M1アレイ	1.0	M1－1	25	M1－2	147	M1－3	134	M1－4	56
	S1アレイ	0.5	S1－1	14	S1－2	46	S1－3	55	S1－4	50
東 側	L2アレイ	2.2	L2－1	13	L2－2	7	L2－3	30	L2－4	145
	M2アレイ	1.4	M2－1	14	M2－2	72	M2－3	25	M2－4	85
	S2アレイ	0.7	S2－1	158	S2－2	85	S2－3	41	S2－4	142

アレイ配置

（1）原子炉建物基礎上端の地震観測記録による検討

2号炉及び3号炉の原子炉建物の応答が同程度であることから，それぞれの地盤の増幅特性 に違いはないと考えられる。
（2）敷地地盤の地震観測記録による検討
検討対象地震の到来方向は東と南の2方向となり，方向別で増幅特性に違いは見られないこと から，敷地の地下構造は特異な構造ではないと考えられる。また，2号観測点及び3号観測点 の解放基盤表面におけるはぎとり波が同程度であることから，それぞれの地盤の増幅特性に違 いはないと考えられる。
（3）敷地地盤の微動観測記録による検討
H / V スペクトル比の1秒以上の長周期側が各観測点で一様にフラットであることから，敷地の深部地下構造は特異な構造ではないと考えられる。なお，H／Vスペクトル比の 0.25 秒以下の短周期側が各観測点で異なるのは，表層（盛土•埋土）の影響によるものと考えられる。
（4）反射法探査及びオフセットVSP探査による検討
東西方向の反射面が地下深部までほぼ水平に連続していることから，東西方向の地下構造は水平成層構造と考えられる。また，南北方向の反射面が北に向かって緩やかに傾斜しているこ とから，南北方向の地下構造は北に傾斜していると考えられる。
（5）微動アレイ探査による検討
西側及び東側アレイにおける速度構造の同定結果は，概ね同程度の深さに同程度の速度層が分布していることから，敷地及び敷地周辺の東西方向の地下構造は水平成層構造と考えられる。

4．地下構造モデルの検討

（1）傾斜構造を考慮した解析による検討
敷地及び敷地周辺の地質•地質構造の調査結果及び反射法探査の検討結果より，敷地の南北方向の地下構造は北に緩やかに傾斜していると考えられるため，傾斜構造を考慮した2次元地下構造モデルを用い，その影響を解析的に検討する。
検討モデルとしては，2号•3号地盤の敷地内モデル及び広域モデルを設定する。また，敷地南方には背斜•向斜構造がみられることから，その構造を考慮した2号•3号地盤の広域モデルを設定し，2号地盤については地質断面図にドレライト（高速度層に対応）の分布が認められること から，ドレライトを考慮した2号地盤の敷地内モデル及び広域モデルを設定する。これらの検討モ デルの一覧を下表に示す。
（2）地下構造モデルの検討
上記検討を踏まえ，2号及び3号観測点における地震観測記録及び物理探査結果に基づき， 2号及び3号地盤の地下構造モデルを設定する。

検討モデルー覧

検討モデル	2号	3号
敷地内モデル（基本）	\bigcirc	\bigcirc
広域モデル（基本）	\bigcirc	\bigcirc
敷地内モデル（ドレライト考慮）	\bigcirc	-
広域モデル（ドレライト考慮）	\bigcirc	-
広域モデル（背斜•向斜考慮）	\bigcirc	\bigcirc

4－（1）傾斜構造を考慮した解析による検討

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討敷地内モデルの検討（2号敷地内モデルの設定）

■ 炉心周辺ボーリングのPS検層結果等より作成した速度層断面図に基づき，2号地盤の2次元地下構造モデル（南北方向）を設定した。
■ なお，敷地の東西方向の地下構造が水平成層であることから，南北方向が最大傾斜断面となる。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

敷地内モデルの検討（2号敷地内モデルの妥当性確認）

■ 以下の検討対象の5地震について，2号敷地内モデルの地盤応答解析結果と観測記録より求めた地盤増幅特性（標高 +10 m ／標高 -5 m 等）を比較すると，同程度となっている。
■ 2000年鳥取県西部地震のシミュレーション結果（標高－135m \rightarrow 標高 $-5 m$ ）と観測記録（標高－5m）を比較すると，同程度となっていることから，2号敷地内モデルは妥当と考えられる。

検討対象地震						
No．	$\begin{gathered} \text { 地震 } \\ \text { (年月日•時刻) } \end{gathered}$	M	$\begin{aligned} & \hline \text { 震源 } \\ & \text { 深さ } \\ & (\mathrm{km}) \\ & \hline \end{aligned}$	震央距離 （km）	方位角 （ ${ }^{\circ}$ ）	入射角 （ ${ }^{\circ}$ ）
1	鳥取県西部の地震 $(2000.7 .17$ $8: 00)$	4.4	16	42.4	115	69
2	鳥取県西部の地震 （2000．10．6 14：52）	4.5	8	34.1	124	77
3	鳥取県西部の地震 $(2000.10 .7$ （2：38）	4.4	8	33.2	125	76
4	鳥取県西部の地震 （2000．10．7 12：03）	4.3	9	33.3	121	75
5	鳥取県西部の地震 $(2000.10 .8 \quad 20: 51)$	5.2	8	33.7	123	76

周波数（Hz）

周波数（Hz）

周波数 $\left(\mathrm{H}_{\mathrm{z}}\right)$

- —観測値
- —理論値
※ 設定したモデルは2号地点の地震観測位置を通る断面としており，表層の地盤増幅特性の高周波数側の一部で観測記録との対応が若干良くない のは，モデル化されていない2号敷地西側の山地形の影響と考えられる。

2000年鳥取県西部地震のシミュレーション結果と観測記録の比較

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討敷地内モデルの検討（3号敷地内モデルの設定）

■ 炉心周辺ボーリングのPS検層結果等より作成した速度層断面図に基づき，3号地盤の 2 次元地下構造モデル（南北方向）を設定した。
■ なお，敷地の東西方向の地下構造が水平成層であることから，南北方向が最大傾斜断面となる。

3号速度層断面図（南北方向）

※ モデルの物性値は後述する3号地下構造モデルの値を用い， メッシュサイズは各層の速度値から求まる波長の $1 / 5$ 程度以下 となるように設定。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

敷地内モデルの検討（3号敷地内モデルの妥当性確認）

■ 以下の検討対象の5地震について，3号敷地内モデルの地盤応答解析結果と観測記録より求めた地盤増幅特性（標高 +8 m ／標高－ 13 m 等）を比較すると，同程度となっている。
■ 2000年鳥取県西部地震のシミュレーション結果（標高－221m \rightarrow 標高－13m）と観測記録（標高－13m） を比較すると，同程度となっていることから，3号敷地内モデルは妥当と考えられる。

検討対象地震						
No．	$\begin{gathered} \text { 地震 } \\ \text { (年月日•時刻) } \end{gathered}$	M	震源 深さ (km)	震央 距離 （km）	方位角 （ ${ }^{\circ}$ ）	入射角 （ ${ }^{\circ}$ ）
1	鳥取県西部の地震 $(2000.7 .17$ $8: 00)$	4.4	16	42.4	115	69
2	鳥取県西部の地震 （2000．10．6	4.5	8	34.1	124	77
3	鳥取県西部の地震 $(2000.10 .7$ $6: 38)$	4.4	8	33.2	125	76
4	鳥取県西部の地震 （2000．10．7 12：03）	4.3	9	33.3	121	75
5	鳥取県西部の地震 $(2000.10 .8 \quad 20: 51)$	5.2	8	33.7	123	76

2000年鳥取県西部地震のシミュレーション結果と観測記録の比較

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

敷地内モデルの検討（ドレライトを考慮した 2 号敷地内モデルの設定）

■ 2号地盤の地質断面図の南側に，高速度層に対応するドレライトが地表付近まで分布していること から，ドレライトを考慮した2号地盤の2次元地下構造モデル（南北方向）を設定した。
■ ドレライトを考慮した速度構造としては，ドレライトの上端レベルに対応させて，下図の青線のとおり速度層境界を設定した。
■ 2号敷地南側のボーリングB－1では，6 層の高速度層が現れていないことから，ボーリングB－1下端 を6層の速度層境界として下図の赤線のとおり速度層境界を設定し，赤線と青線に囲まれた速度層は6’層とした。

■ 敷地内モデルの検討において，地震波の斜め入射を想定する際の入射角は，宾道断層 の第1アスペリティ部の各要素から求め，その平均値は 27° となる。
■ また，速度構造（Vs，Vp）から求まる敷地内モデル下端の臨界角※は 29° となる。
－上記より，敷地内モデルの検討における斜め入射の入射角としては，解析精度を保持す るため臨界角※より小さくし，その角度は 25° に設定した。

敷地内モデルの入射角の設定（イメージ図）

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号敷地内モデルの検討（基本：入射角の違いによる増幅特性の比較）

■ 2号敷地内モデルに地震波を鉛直（ 0° ）及び斜め（ $\pm 25^{\circ}$ ）に入射すると，鉛直入射の地盤増幅特性が，斜め入射の地盤増幅特性と比較して，同程度またはそれ以上となっ ており，斜め入射を考慮しても傾斜構造による特異な増幅傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号敷地内モデルの検討（ドレライト考慮：入射角の違いによる増幅特性の比較）

■ ドレライトを考慮した2号敷地内モデルに地震波を鉛直（ 0° ）及び斜め（ $\pm 25^{\circ}$ ）に入射 すると，鉛直入射の地盤増幅特性が，斜め入射の地盤増幅特性と比較して，同程度また はそれ以上となっており，斜め入射を考慮しても傾斜構造による特異な増幅傾向はみら れない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号敷地内モデルの検討（基本・ドレライト考慮：1次元と 2 次元による増幅特性の比較）

■ 2号炉心位置における1次元地下構造モデルの地盤増幅特性が，2号敷地内モデル（基本及びドレライト考慮の2ケース）の地盤増幅特性（鉛直入射）と比較して，同程度または それ以上となっており，1次元と2次元の増幅傾向に違いはみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号敷地内モデルの検討（基本：入射角の違いによる増幅特性の比較）

■ 3号敷地内モデルに地震波を鉛直（ 0° ）及び斜め（ $\pm 25^{\circ}$ ）に入射すると，鉛直入射の地盤増幅特性が，斜め入射の地盤増幅特性と比較して，同程度またはそれ以上となっ ており，斜め入射を考慮しても傾斜構造による特異な増幅傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3 号敷地内モデルの検討（基本：1次元と2次元による増幅特性の比較）

■ 3号炉心位置における1次元地下構造モデルの地盤増幅特性が，3号敷地内モデルの地盤増幅特性（鉛直入射）と比較して，同程度またはそれ以上となっており，1次元と 2 次元の増幅傾向に違いはみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

広域モデルの検討（2号，3号広域モデルの設定）

■ 敷地及び敷地周辺の広域的な傾斜構造による影響を検討するため，2号及び3号の広域の2次元地下構造モデル（南北方向）を，敷地内モデルの範囲を拡大（水平方向：4000m，鉛直方向： 2030 m ） して設定した。なお，2号広域モデルについては基本とドレライト考慮の2ケースを設定した。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

広域モデルの検討（背斜•向斜構造を考慮した2号，3号広域モデルの設定）

－敷地周辺の地質断面図に基づき，発電所の敷地南方に位置する表層の背斜•向斜構造を考慮して， 2号及び3号の広域の2次元地下構造モデル（南北方向）を設定した。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討広域モデルの検討（地震波の斜め入射における入射角の設定）
■ 広域モデルの検討において，地震波の斜め入射を想定する際の入射角は，宍道断層の第1アスペリティ部の各要素から求め，その平均値は52 「 となる。
■ また，速度構造（Vs，Vp）から求まる広域モデル下端の臨界角※は35 となる。
■ 上記より，広域モデルの検討における斜め入射の入射角としては，解析精度を保持する ため臨界角 $※$ より小さくし，その角度は 15° 及び 30° に設定した。

広域モデルの入射角の設定（イメージ図）

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（基本：入射角の違いによる増幅特性の比較）

■ 2号広域モデルに地震波を鉛直（ 0° ）及び斜め（ $\pm 15^{\circ}, ~ \pm 30^{\circ}$ ）に入射すると，鉛直入射の地盤増幅特性が，斜め入射の地盤増幅特性と比較して，同程度またはそれ以上と なっており，斜め入射を考慮しても傾斜構造による特異な増幅傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（ドレライト考慮：入射角の違いによる増幅特性の比較）

■ドレライトを考慮した2号広域モデルに地震波を鉛直（ 0° ）及び斜め（ $\pm 15^{\circ}, ~ \pm 30^{\circ}$ ）に入射すると，鉛直入射の地盤増幅特性が，斜め入射の地盤増幅特性と比較して，同程度 またはそれ以上となっており，斜め入射を考慮しても傾斜構造による特異な増幅傾向は みられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（基本・ドレライト考慮：1次元と2次元による増幅特性の比較）

■ 2号炉心位置における1次元地下構造モデルの地盤増幅特性が，2号広域モデル（基本及びドレライト考慮の2ケース）の地盤増幅特性（鉛直入射）と比較して，同程度またはそ れ以上となっており，1次元と 2 次元の増幅傾向に違いはみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（基本：入射角の違いによる増幅特性の比較）

－3号広域モデルに地震波を鉛直（ 0° ）及び斜め（ $\left.\pm 15^{\circ}, ~ \pm 30^{\circ}\right)$ に入射すると，鉛直入射の地盤増幅特性が，斜め入射の地盤増幅特性と比較して，同程度またはそれ以上と なっており，斜め入射を考慮しても傾斜構造による特異な増幅傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3 号広域モデルの検討（基本：1次元と 2 次元による増幅特性の比較）

■ 3号炉心位置における1次元地下構造モデルの地盤増幅特性が，3号広域モデルの地盤増幅特性（鉛直入射）と比較して，同程度またはそれ以上となっており，1次元と 2 次元の増幅傾向に違いはみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（背斜•向斜考慮：入射角の違いによる増幅特性の比較）

■ 背斜•向斜構造を考慮した2号広域モデルに地震波を鉛直（ 0° ）及び斜め（ $\pm 15^{\circ}$ ， $\pm 30^{\circ}$ ）に入射すると，鉛直入射の地盤増幅特性が，斜め入射の地盤増幅特性と比較し て，同程度またはそれ以上となっており，斜め入射を考慮しても傾斜構造による特異な増幅傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2 号広域モデルの検討（背斜•向斜考慮：1次元と 2 次元による増幅特性の比較）

■ 2号炉心位置における1次元地下構造モデルの地盤増幅特性が，2号背斜•向斜モデル の地盤増幅特性（鉛直入射）と比較して，同程度またはそれ以上となっており，1次元と2次元の増幅傾向に違いはみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（背斜•向斜考慮：入射角の違いによる増幅特性の比較）

■ 背斜•向斜構造を考慮した3号広域モデルに地震波を鉛直（ 0° ）及び斜め（ $\pm 15^{\circ}$ ， $\pm 30^{\circ}$ ）に入射すると，鉛直入射の地盤増幅特性が，斜め入射の地盤増幅特性と比較し て，同程度またはそれ以上となっており，斜め入射を考慮しても傾斜構造による特異な増幅傾向はみられない。

3号広域モデル（背斜•向斜考慮）

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3 号広域モデルの検討（背斜•向斜考慮：1次元と2次元による増幅特性の比較）

■ 3号炉心位置における1次元地下構造モデルの地盤増幅特性が，3号背斜•向斜モデル の地盤増幅特性（鉛直入射）と比較して，同程度またはそれ以上となっており，1次元と2次元の増幅傾向に違いはみられない。

■ 下式のRicker波（最大加速度： $1.0 \mathrm{~m} / \mathrm{s}^{2}$ ，中心周期： 0.2 s ，最大値生起時刻： 5.0 s ）を用い， 2次元地下構造モデルに対して地震波（SV波）を鉛直（ 0° ）及び斜め（ $\pm 15^{\circ}, ~ \pm 30^{\circ}$ ）に入射して伝播特性を比較する。
■ Ricker波は，振幅が特定の周波数帯に比較的均一に分布しており，波の形状が単純で波形の比較に適している。
■ Ricker波の中心周期は，島根サイトでは特徴的な周期帯を持つ地震記録が観測されてい ないことから，建物の固有周期（約 0.2 s ）付近の周期としている。

$$
\begin{array}{ll}
f(t)=(1-2 \mathrm{~A}) \exp (-\mathrm{A}) & t_{C}: \text { 中心周期 } \\
\mathrm{A}=\frac{\pi^{2}\left(t-t_{M}\right)^{2}}{t_{C}^{2}}=\left(f_{C} \pi\right)^{2}\left(t-t_{M}\right)^{2} & f_{C}: \text { 中心振動数 } \\
t_{M}: \text { 最大値生起時刻 }
\end{array}
$$

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 2号広域モデルに地震波を鉛直（ 0° ）に入射した検討結果（スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 2号広域モデルに地震波を鉛直（ 0° ）に入射した検討結果（炉心及び炉心から約 20 m ， $40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

[^1]4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 2号広域モデルに地震波を斜め（ $+15^{\circ}$ ）に入射した検討結果（スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 2号広域モデルに地震波を斜め（ $+15^{\circ}$ ）に入射した検討結果（炉心及び炉心から約 20 m ， $40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 2号広域モデルに地震波を斜め（ -15° ）に入射した検討結果（スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（基本 ：入射角の違いによるRicker波の検討）

－2号広域モデルに地震波を斜め（ -15° ）に入射した検討結果（炉心及び炉心から約 20 m ， $40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 2号広域モデルに地震波を斜め（ $+30^{\circ}$ ）に入射した検討結果（スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 2号広域モデルに地震波を斜め（ $+30^{\circ}$ ）に入射した検討結果（炉心及び炉心から約 20 m ， $40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 2号広域モデルに地震波を斜め（ -30° ）に入射した検討結果（スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 2号広域モデルに地震波を斜め（ -30° ）に入射した検討結果（炉心及び炉心から約 20 m ， $40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（ドレライト考慮 ：入射角の違いによるRicker波の検討）

■ ドレライトを考慮した2号広域モデルに地震波を鉛直（ 0° ）に入射した検討結果（スナップ ショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（ドレライト考慮 ：入射角の違いによるRicker波の検討）

■ ドレライトを考慮した2号広域モデルに地震波を鉛直（ 0° ）に入射した検討結果（炉心及 び炉心から約 $20 \mathrm{~m}, ~ 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向 はみられない。

炉心及び炉心周辺（モデル上端）の加速度波形（ 0° 入射）

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（ドレライト考慮：入射角の違いによるRicker波の検討）

■ドレライトを考慮した2号広域モデルに地震波を斜め（＋15 ${ }^{\circ}$ ）に入射した検討結果（ス ナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

Ricker波による検討結果（ $+15^{\circ}$ 入射）

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（ドレライト考慮：入射角の違いによるRicker波の検討）

■ ドレライトを考慮した2号広域モデルに地震波を斜め（＋15 ${ }^{\circ}$ ）に入射した検討結果（炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向

炉心及び炉心周辺（モデル上端）の加速度波形（ $+15^{\circ}$ 入射）

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（ドレライト考慮：入射角の違いによるRicker波の検討）

■ドレライトを考慮した2号広域モデルに地震波を斜め（ -15° ）に入射した検討結果（ス ナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（ドレライト考慮 ：入射角の違いによるRicker波の検討）

■ ドレライトを考慮した2号広域モデルに地震波を斜め（ -15° ）に入射した検討結果（炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（ドレライト考慮：入射角の違いによるRicker波の検討）

■ドレライトを考慮した2号広域モデルに地震波を斜め（＋30 ${ }^{\circ}$ ）に入射した検討結果（ス ナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

Ricker波による検討結果（ $+30^{\circ}$ 入射）

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（ドレライト考慮：入射角の違いによるRicker波の検討）

■ ドレライトを考慮した2号広域モデルに地震波を斜め（＋30 ${ }^{\circ}$ ）に入射した検討結果（炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向

炉心及び炉心周辺（モデル上端）の加速度波形（ $+30^{\circ}$ 入射）

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（ドレライト考慮：入射角の違いによるRicker波の検討）

■ドレライトを考慮した2号広域モデルに地震波を斜め（ -30° ）に入射した検討結果（ス ナップショット）によると，傾斜構造による特異な傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（ドレライト考慮：入射角の違いによるRicker波の検討）

■ ドレライトを考慮した2号広域モデルに地震波を斜め（ -30° ）に入射した検討結果（炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 3号広域モデルに地震波を鉛直（ 0° ）に入射した検討結果（スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（基本 ：入射角の違いによるRicker波の検討）

■ 3号広域モデルに地震波を鉛直（ 0° ）に入射した検討結果（炉心及び炉心から約 20 m ， $40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

炉心及び炉心周辺（モデル上端）の加速度波形（鉛直入射）

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 3号広域モデルに地震波を斜め（ $+15^{\circ}$ ）に入射した検討結果（スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 3号広域モデルに地震波を斜め（ $+15^{\circ}$ ）に入射した検討結果（炉心及び炉心から約 20 m ， $40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（基本 ：入射角の違いによるRicker波の検討）

■ 3号広域モデルに地震波を斜め（ -15° ）に入射した検討結果（スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 3号広域モデルに地震波を斜め（ -15° ）に入射した検討結果（炉心及び炉心から約 20 m ， $40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 3号広域モデルに地震波を斜め（ $+30^{\circ}$ ）に入射した検討結果（スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 3号広域モデルに地震波を斜め（ $+30^{\circ}$ ）に入射した検討結果（炉心及び炉心から約 20 m ， $40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 3号広域モデルに地震波を斜め（ -30° ）に入射した検討結果（スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（基本：入射角の違いによるRicker波の検討）

■ 3号広域モデルに地震波を斜め（ -30° ）に入射した検討結果（炉心及び炉心から約 20 m ， $40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（背斜•向斜考慮 ：入射角の違いによるRicker波の検討）

－背斜•向斜構造を考慮した2号広域モデルに地震波を鉛直（ 0° ）に入射した検討結果 （スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

（

Ricker波による検討結果（ 0° 入射）

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した2号広域モデルに地震波を鉛直（ 0° ）に入射した検討結果 （炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

[^2]4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した2号広域モデルに地震波を斜め（ $+15^{\circ}$ ）に入射した検討結果 （スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した2号広域モデルに地震波を斜め（ $+15^{\circ}$ ）に入射した検討結果 （炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した2号広域モデルに地震波を斜め（ -15° ）に入射した検討結果 （スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した2号広域モデルに地震波を斜め（ -15° ）に入射した検討結果 （炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した2号広域モデルに地震波を斜め（ $+30^{\circ}$ ）に入射した検討結果 （スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した2号広域モデルに地震波を斜め（ $+30^{\circ}$ ）に入射した検討結果 （炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

－背斜•向斜構造を考慮した2号広域モデルに地震波を斜め（ -30° ）に入射した検討結果 （スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

2号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

－背斜•向斜構造を考慮した2号広域モデルに地震波を斜め（ -30° ）に入射した検討結果 （炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

－背斜•向斜構造を考慮した3号広域モデルに地震波を鉛直（ 0° ）に入射した検討結果 （スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した3号広域モデルに地震波を鉛直（ 0° ）に入射した検討結果（炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した3号広域モデルに地震波を斜め（ $+15^{\circ}$ ）に入射した検討結果 （スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した3号広域モデルに地震波を斜め（＋15 ${ }^{\circ}$ ）に入射した検討結果 （炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（背斜•向斜考慮 ：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した3号広域モデルに地震波を斜め（ -15° ）に入射した検討結果 （スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（背斜•向斜考慮 ：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した3号広域モデルに地震波を斜め（ -15° ）に入射した検討結果 （炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（背斜•向斜考慮 ：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した3号広域モデルに地震波を斜め（ $+30^{\circ}$ ）に入射した検討結果 （スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（背斜•向斜考慮 ：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した3号広域モデルに地震波を斜め（ $+30^{\circ}$ ）に入射した検討結果 （炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

炉心及び炉心周辺（モデル上端）の加速度波形（ $+30^{\circ}$ 入射）

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

■ 背斜•向斜構造を考慮した3号広域モデルに地震波を斜め（ -30° ）に入射した検討結果 （スナップショット）によると，傾斜構造による特異な伝播傾向はみられない。

Ricker波による検討結果（ -30° 入射）

4．地下構造モデルの検討（1）傾斜構造を考慮した解析による検討

3号広域モデルの検討（背斜•向斜考慮：入射角の違いによるRicker波の検討）

－背斜•向斜構造を考慮した3号広域モデルに地震波を斜め（ -30° ）に入射した検討結果 （炉心及び炉心から約 $20 \mathrm{~m}, 40 \mathrm{~m}, 60 \mathrm{~m}$ の加速度波形）によると，傾斜構造による特異な伝播傾向はみられない。

－傾斜構造を考慮した2次元地下構造モデルとして，2号及び3号地盤の敷地内モデル，広域モデルに加え，敷地南方の背斜•向斜構造を考慮した広域モデルを設定し，また， 2号地盤についてはドレライトを考慮した敷地内モデル及び広域モデルを設定し，地震波の入射角の違いによる地盤增幅特性への影響を検討した。その結果，全ての検討 モデルにおいて，鉛直入射の地盤増幅特性が，斜め入射の地盤増幅特性と比較して，同程度またはそれ以上となり，斜め入射を考慮しても傾斜構造による特異な増幅傾向 はみられなかった。
■ 1次元地下構造モデルによる地盤増幅特性と，上記の 2 次元地下構造モデルの鉛直入射の地盤増幅特性を比較すると，全ての検討モデルにおいて， 1 次元地下構造モデ ルの増幅特性が，2次元地下構造モデルの増幅特性と同程度またはそれ以上となり， 1次元と2次元の増幅傾向に違いは見られなかった。
－2次元地下構造モデルにRicker波を入射して，地震波の入射角の違いによる伝播特性への影響を検討すると，全ての検討モデルにおいて，地盤の傾斜構造及び背斜•向斜構造等による特異な伝播傾向はみられなかった。
＞以上より，南北方向の傾斜構造が敷地の地震動評価に与える影響はほとんどないこと を確認できた（結果的に保守的な評価となる）ことから，南北方向の地下構造は水平成層構造で近似できると考えられる。

4－（2）地下構造モデルの検討

－敷地及び敷地周辺の地質•地質構造の調査結果，観測記録及び物理探査に基づく検討結果より，東西方向の地下構造は水平成層構造と考えられる。
－敷地及び敷地周辺の地質•地質構造の調査結果より，南北方向の地下構造は北に緩 やかに傾斜していると考えられるため，2次元地下構造モデル（南北方向）を用いて検討したところ，傾斜構造が敷地の地震動評価に与える影響はほとんどないことを確認で きたことから，南北方向の地下構造は水平成層構造で近似できると考えられる。
＞以上より，敷地の地震動評価に用いる地下構造モデルは，東西•南北方向ともに水平成層構造と仮定して問題ないと考えられるため，敷地地盤の物理探査結果及び地震観測記録等に基づき， 2 号及び 3 号の 1 次元地下構造モデルを設定する。

地下構造モデルの設定（設定方針）

■ 大深度ボーリング孔におけるPS検層結果において，P波速度が $5000 \mathrm{~m} / \mathrm{s}$ 程度となる高速度層 1 （深度 $25 \sim 60 \mathrm{~m}$ ）及び高速度層（2）（深度 $250 \sim 380 \mathrm{~m}$ ）が認められたことから，これら の高速度層の炉心周辺における分布状況を踏まえ，2号及び3号地下構造モデルを設定する。

PS検層位置

大深度ボーリング孔いにおけるPS検層結果

層区分	標高 (m) +8.5	深度 (m)	層厚 (m)	S 波速度 $(\mathrm{m} / \mathrm{s})$	P波速度 $(\mathrm{m} / \mathrm{s})$
1	-16.5	$0 \sim 25$	25	760	1870
2	-51.5	$25 \sim 60$	35	2660	5320
3	-241.5	$60 \sim 250$	190	1710	3940
4	-371.5	$250 \sim 380$	130	2530	5220
5	-981.5	$380 \sim 990$	610	2190	4350
6	-1191.5	$990 \sim 1200$	210	2730	5160

高速度層（1）

高速度層（2）

4．地下構造モデルの検討（2）地下構造モデルの検討

2号地下構造モデルの設定（2号地盤における高速度層の分布）

■ 高速度層は，地質断面図における貫入岩類（安山岩，ドレライト）に対応すると考えられる。
■ 2号地質断面図において，2号炉心直下に高速度層（1）に対応する貫入岩類は見られず，高速度層（2）に対応する貫入岩類は標高 -150 m 程度以深に分布している。
■ 高速度層（1）は，2号炉心周辺ボーリングのPS検層結果においても見られない。また，高速度層（2）は，2号炉心周辺ボーリングのPS検層結果の最下層（標高－160m以深）に対応する層が確認できるため，大深度ボーリングのPS検層結果の高速度層②との連続性を考慮し て，2号地下構造モデルの設定に反映する。

4．地下構造モデルの検討（2）地下構造モデルの検討

2号地下構造モデルの設定（高速度層（2）の設定）

■ 大深度ボーリングの高速度層②の速度値と2号炉心周辺ボーリングの最下層（標高 -160 m 以深）の速度値が対応していることから，2号地盤における高速度層（2）の上端は標高－160mに設定した。
■ 傾斜構造としては， 2 号炉心位置の高速度層（2）上端（標高 -160 m ）と大深度ボーリングの高速度層（2）上端（標高－241．5m）を結ぶと，2号地盤の速度層断面の傾斜と概ね整合して いる。

4．地下構造モデルの検討（2）地下構造モデルの検討

2号地下構造モデルの設定（速度値，密度の設定）

■ 2号地下構造モデルのS波•P波速度，密度については，各種調査結果に基づき設定した。

大深度ボーリング
炬心周辺ボーリング

2号地下構造モデル

2号地下構造モデルの設定（同定解析：解析条件）

－2号地下構造モデルの設定において，減衰定数については，A地点で観測された5地震の観測記録を用いて，伝達関数及びH／Vスペクトル比に基づく同定解析により設定した。

No．	地 震 （年月日•時刻）	M	$\begin{aligned} & \text { 䨬源さ } \\ & (k \mathrm{k}) \end{aligned}$	$\begin{aligned} & \text { 震央 } \\ & \text { 距離 } \\ & (\mathrm{km}) \end{aligned}$	方位角	入射角 （ ${ }^{\circ}$ ）
1	鳥取県西部の地震 （2000．7．17 8：00）	4.4	16	42.4	115	69
2	鳥取県西部の地震 （2000．10．6 $14: 52)$	4.5	8	34.1	124	77
3	鳥取県西部の地震 $(2000.10 .7$ 6：38）	4.4	8	33.2	125	76
4	鳥取県西部の地震 $(2000.10 .7$ 12：03）	4.3	9	33.3	121	75
5	鳥取県西部の地震 （2000．10．8 20：51）	5.2	8	33.7	123	76

：同定解析に用いる観測記録のレベル
A地点地震計設置位置

4．地下構造モデルの検討（2）地下構造モデルの検討

2号地下構造モデルの設定（同定解析：伝達関数）

－観測記録に基づき評価した平均伝達関数と，同定解析により設定した2号地下構造モデル による理論伝達関数は良く整合している。

4．地下構造モデルの検討（2）地下構造モデルの検討
2号地下構造モデルの設定（同定解析：H／Vスペクトル比）
■ 観測記録に基づき評価した平均H／Vスペクトル比と，同定解析により設定した2号地下構造モデルによる理論H／Vスペクトル比は良く整合している。

H／Vスペクトル比の比較

4．地下構造モデルの検討（2）地下構造モデルの検討

2号地下構造モデルの設定（モデル設定値）

■ 2号地下構造モデルを以下のとおり設定した。なお，標高－1510m以深の減衰については岩田•関口（2002）${ }^{(6)}$ で用いられている地下構造モデル※1の値を用いている。

2号地下構造モデル

層番号	標高(m)	層厚 （m）	S波 速度 $(\mathrm{m} / \mathrm{s})$	P波 速度 （ m / s ）	$\begin{gathered} \text { 密度 } \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	減衰定数（\％）									
						h_{5}					h_{P}				
						$\mathrm{h}(\mathrm{f})^{\text {※2 }}$	0．05s	0.1 s	0．2s	0．5s	$\mathrm{h}(\mathrm{f})^{* 2}$	0．05s	0.1 s	0．2s	0．5s
1		5	250	800	2100	$75.8 \mathrm{f}^{-0.003}$	75.12	75.28	75.43	75.64	$77.0 \mathrm{f}^{-0.003}$	76.31	76.47	76.63	76.84
2		8.8	900	2100	2350	$54.6 \mathrm{f}^{-0.319}$	21.00	26.19	32.68	43.77	$70.4 \mathrm{f}^{-0.319}$	27.07	33.77	42.13	56.43
3		61.2	1600	3600	2500	$46.0 f^{-0.987}$	2.39	4.74	9.39	23.21	$83.2 f^{-0.987}$	4.33	8.57	16.99	41.98
4		50	1950	4000	2500	$27.3 \mathrm{f}^{-0.539}$	5.43	7.89	11.47	18.79	$77.4 \mathrm{f}^{-0.539}$	15.40	22.37	32.51	53.27
5		50	2000	4050	2650	$48.4 \mathrm{f}^{-0.582}$	8.47	12.67	18.97	32.33	$82.9 \mathrm{f}^{-0.582}$	14.50	21.70	32.49	55.38
6		73.5	2350	4950	2850	$7.62 f^{-0.363}$	2.57	3.30	4.25	5.92	$8.53 \mathrm{f}^{-0.363}$	2.88	3.70	4.76	6.63
7		56.5	2530	5220	2680	$7.62 \mathrm{f}^{-0.363}$	2.57	3.30	4.25	5.92	$8.53 \mathrm{f}^{-0.363}$	2.88	3.70	4.76	6.63
8		610	2190	4350	2650	$5.01 \mathrm{f}^{-0.497}$	1.13	1.60	2.25	3.55	$5.40 f^{-0.497}$	1.22	1.72	2.43	3.83
9		610	2730	5160	2640	$9.46 \mathrm{f}^{-0.920}$	0.60	1.14	2.15	5.00	$9.67 f^{-0.920}$	0.61	1.16	2.20	5.11
10		530	3020	5220	2620	0.250					0.125				
11		∞	3570	6180	2720	0.185					0.091				

※1 京都大学防災研究所地震予知センター鳥取地震観測所が震源決定に用いている地下構造モデルを参考に設定されたモデルで，2000年鳥取県西部地震の震源インバージョン及び強震動シミュレーションに用いられており，強震動シミュレーション結果は観測記録と良く対応することが確認されている。
※2 fは振動数を表す。
※3 炉心周辺ボーリング及び大深度ボーリングのPS検層結果の接続部分であり，PS検層では境界を把握できないため同定解析により設定。

4．地下構造モデルの検討（2）地下構造モデルの検討

2号地下構造モデルの設定（モデルの妥当性碓認）

■ 2号地下構造モデルを用いた2000年鳥取県西部地震の地盤応答解析結果（標高－135m \rightarrow標高 $-5 m$ ）と観測記録（標高 $-5 m$ ）を比較すると，同程度となっていることから，2号地下構造 モデルは妥当と考えられる。

2号地下構造モデルによる地盤応答解析結果と観測記録の比較（2000年鳥取県西部地震）

4．地下構造モデルの検討（2）地下構造モデルの検討

3号地下構造モデルの設定（3号地盤における高速度層の分布）

■ 3号地質断面図において，3号炉心直下に高速度層（1）※に対応する貫入岩類は標高－25～ -40 ml に分布し，高速度層（2）に対応する貫入岩類は標高－200m程度に若干現れている。
■ 高速度層（1）※及び（2）の層厚が比較的薄く，3号炉心周辺ボーリングのPS検層結果には現 れていない。
■ 2号地質断面図の最下層に見られた高速度層（2）は，2号地盤より北に位置する3号地盤で は，敷地地盤が北に傾斜している影響でほとんど現れていないが，2号地質断面図及び大深度ボーリングのPS検層結果から，深部に高速度層（2）が分布しているものと考えられるた め，3号地下構造モデルの設定に反映する。

4．地下構造モデルの検討（2）地下構造モデルの検討

3号地下構造モデルの設定（3号地盤における高速度層②の設定方法）

■ 3号地質断面図において，3号炉心直下の標高－215m付近に高速度層（2）が一部確認できる ことから，3号地盤における高速度層（2）の上端は標高－215mに設定した。
－傾斜構造としては，3号炉心位置の高速度層（2）上端（標高 -215 m ）と大深度ボーリングの高速度層（2）上端（標高－241．5m）を結ぶと，3号地盤の速度層断面の傾斜と概ね整合して いる。

4．地下構造モデルの検討（2）地下構造モデルの検討

3号地下構造モデルの設定（速度値，密度の設定）

■ 3号地下構造モデルのS波•P波速度，密度については，各種調査結果に基づき設定した。

3号地下構造モデルの設定（同定解析：解析条件）

■ 3号地下構造モデルの設定において，減衰定数については，B地点で観測された5地震の観測記録を用いて，伝達関数及びH／Vスペクトル比に基づく同定解析により設定した。

No．	地 震 （年月日•時刻）	M	$\begin{aligned} & \text { 震源 } \\ & \text { 深さ } \\ & (\mathrm{km}) \end{aligned}$	震央 距離 （km）	方位角 （ ${ }^{\circ}$ ）	入射角 （ ${ }^{\circ}$ ）
1	鳥取県西部の地震 （2000．7．17 8：00）	4.4	16	42.4	115	69
2	鳥取県西部の地震 （2000．10．6	4.5	8	34.1	124	77
3	鳥取県西部の地震 $(2000.10 .7 \quad 6: 38)$	4.4	8	33.2	125	76
4	鳥取県西部の地震 $(2000.10 .7 \quad 12: 03)$	4.3	9	33.3	121	75
5	鳥取県西部の地震 $(2000.10 .8 \quad 20: 51)$	5.2	8	33.7	123	76

∇ 標高 +46 m

B地点地震計設置位置
4．地下構造モデルの検討
（2）地下構造モデルの検討

3号地下構造モデルの設定（同定解析：伝達関数）

■ 観測記録に基づき評価した平均伝達関数と，同定解析により設定した3号地下構造モデル による理論伝達関数は良く整合している。

伝達関数の比較（水平方向）
伝達関数の比較（鉛直方向）

4．地下構造モデルの検討（2）地下構造モデルの検討

3号地下構造モデルの設定（同定解析：H／Vスペクトル比）

■ 観測記録に基づき評価した平均H／Vスペクトル比と，同定解析により設定した3号地下構造モデルによる理論H／Vスペクトル比は良〈整合している。

4．地下構造モデルの検討（2）地下構造モデルの検討

3号地下構造モデルの設定（モデル設定値）

■ 3号地下構造モデルを以下のとおり設定した。なお，標高－1510m以深の減衰については岩田•関口（2002）（6）で用いられている地下構造モデル※1の値を用いている。

層番号	標高 （m）	層厚 （m）	S波 速度 （ m / s ）	P波 速度 （ m / s ）	$\begin{gathered} \text { 密度 } \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	減衰定数（\％）									
						$\mathrm{h}_{\text {S }}$					h_{P}				
						$\mathrm{h}(\mathrm{f})^{* 2}$	0．05s	0．1s	0．2s	0．5s	$\mathrm{h}(\mathrm{f})^{* 2}$	0．05s	0．1s	0．2s	0．5s
（1）	＋42．7	3.3	270	520	2280	$15.7 \mathrm{f}^{-0.887}$	1.10	2.04	3.77	8.49	$24.9 \mathrm{f}^{-0.887}$	1.75	3.23	5.97	13.46
（2）		6.4	620	1710	2380	$8.92 f^{-0.845}$	0.71	1.27	2.29	4.97	$12.5 \mathrm{f}^{-0.845}$	0.99	1.79	3.21	6.96
（3）	＋36．3	29.3	960	2270	2390	$62.99^{-0.263}$	28.61	34.33	41.19	52.42	$64.5 f^{-0.263}$	29.34	35.20	42.24	53.75
（4）	$-24-$	31	1520	3240	2500	$24.7 \mathrm{f}^{-0.733}$	2.75	4.57	7.59	14.86	$62.0 f^{-0.733}$	6.90	11.47	19.06	37.30
（5）		116	1900	3860	2570	$13.1 \mathrm{f}^{-0.463}$	3.27	4.51	6.22	9.50	$26.9 \mathrm{f}^{-0.463}$	6.72	9.26	12.77	19.52
（6）	-172	32	2100	4150	2490	$22.88^{-0.739}$	2.49	4.16	6.94	13.66	$33.8 f^{-0.739}$	3.69	6.16	10.29	20.25
（7）		43	1770	3800	2560	$25.9 \mathrm{f}^{-0.817}$	2.24	3.95	6.95	14.70	$27.8 \mathrm{f}^{-0.817}$	2.40	4.24	7.46	15.78
（8）	$\begin{aligned} & -215- \\ & -345- \end{aligned}$	130	2530	5220	2680	$7.62 f^{-0.363}$	2.57	3.30	4.25	5.92	$8.53 \mathrm{f}^{-0.363}$	2.88	3.70	4.76	6.63
（9）		610	2190	4350	2650	$5.01 \mathrm{f}^{-0.497}$	1.13	1.60	2.25	3.55	$5.40 f^{-0.497}$	1.22	1.72	2.43	3.83
（10）	$\begin{array}{r} -955- \\ -1510- \end{array}$	555	2730	5160	2640	$9.46 \mathrm{f}^{-0.920}$	0.60	1.14	2.15	5.00	$9.67 f^{-0.920}$	0.61	1.16	2.20	5.11
（11）		530	3020	5220	2620	0.250					0.125				
（12）	－2040	∞	3570	6180	2720	0.185					0.091				

$※ 1$ 京都大学防災研究所地震予知センタ一鳥取地震観測所が震源決定に用いている地下構造モデルを参考に設定されたモデルで，2000年鳥取県西部地震の震源インバージョン及び強震動シミュレーションに用いられており，強震動シミュレーション結果は観測記録と良く対応することが確認されている。
※2 f は振動数を表す。

4．地下構造モデルの検討（2）地下構造モデルの検討

3号地下構造モデルの設定（モデルの妥当性確認）

■ 3号地下構造モデルを用いた2000年鳥取県西部地震の地盤応答解析結果（標高－221m \rightarrow標高 -13 m ）と観測記録（標高 -13 m ）を比較すると，同程度となっていることから，3号地下構造モデルは妥当と考えられる。

－敷地の傾斜構造を考慮した解析による検討を踏まえ，2号及び3号観測点における地震観測記録及び物理探査結果に基づき，2号及び3号地下構造モデルを設定した。
－2号及び3号地下構造モデルを用いた2000年鳥取県西部地震の地盤応答解析結果と観測記録を比較すると，同程度となることから，2号及び3号地下構造モデルは妥当と考えられる。

5．地震動評価に用いる地下構造モデルの設定
－敷地地盤の物理探査結果及び地震観測記録等に基づき設定した2号及び3号地下構造モデルより，敷地の地震動評価に用いる地下構造モデルを設定する。
－敷地の地震動評価に用いる地下構造モデルとしては，敷地の地震動を安全側に評価 するように，速度値及び減衰定数等の物性値を設定する。

5．地震動評価に用いる地下構造モデルの設定

地震動評価に用いる地下構造モデル（速度値等の物性値）

■ 2号及び3号地下構造モデルの地盤増幅特性（解放基盤表面／地震基盤面）を比較する と，同程度となるが，3号地下構造モデルの方が若干大きくなるため，地震動評価に用い る地下構造モデルの速度値等の物性値は，3号地下構造モデルのものを用いた。

標高－10m	2号地下構造モデル						
	亚番号	$\begin{aligned} & \text { 醇高 } \end{aligned}$	$\begin{aligned} & \text { 層厚 } \\ & (\mathrm{m}) \end{aligned}$	$\begin{gathered} \text { S波 } \\ \text { 速度 } \\ (\mathrm{m} / \mathrm{s}) \end{gathered}$	$\begin{aligned} & \text { P波 } \\ & \text { 速度 } \\ & (\mathrm{m} / \mathrm{s}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 密度 } \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	減衰定数 （\％）
	T		5.0	250	800	2100	$75.8 \mathrm{f}^{-0.003}$
	2		8.8	900	2100	2350	$54.66^{-0.319}$
解放基盤表面	3		61.2	1600	3600	2500	$46.0 f^{-0.987}$
	4		50.0	1950	4000	2500	$27.3 \mathrm{f}^{-0.539}$
	5		50.0	2000	4050	2650	48．45 $\mathrm{f}^{-0.582}$
	6		73.5	2350	4950	2850	$7.62 f^{-0.363}$
	7		56.5	2530	5220	2680	$7.62 f^{-0.363}$
	8		610.0	2190	4350	2650	$5.01 f^{-0.497}$
	9	－900	610.0	2730	5160	2640	$9.46 \mathrm{f}^{-0.920}$
標高－2040m	10	－2040	530.0	3020	5220	2620	0.250
地震基盤面	（1）		∞	3570	6180	2720	0.185

$\xrightarrow{\text { 標高 }-10 \mathrm{~m}}$ 解放基盤表面	層番号	$\begin{aligned} & \text { 檟高 } \\ & \text { (m) } \end{aligned}$	$\begin{aligned} & \text { 層厚 } \\ & (\mathrm{m}) \end{aligned}$	$\begin{gathered} \mathrm{s} \text { 波 } \\ \text { 速度 } \\ (\mathrm{m} / \mathrm{s}) \end{gathered}$	$\begin{aligned} & \text { P波 } \\ & \text { 速度 } \\ & (\mathrm{m} / \mathrm{s}) \end{aligned}$	$\begin{gathered} \text { 密度 } \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	減哀定数 （\％）
	（1）	$\begin{gathered} +42.7 \\ +36.3 \end{gathered}$	3.3	270	520	2280	$15.7 \mathrm{f}^{-0.887}$
	（2）		6.4	620	1710	2380	$8.92 \mathrm{f}^{-0.845}$
	（3）		29.3	960	2270	2390	$62.9 \mathrm{f}^{-0263}$
	（4）		31.0	1520	3240	2500	24．77 ${ }^{-0^{-733}}$
	（5）		116.0	1900	3860	2570	$13.11^{-0.483}$
	（6）		32.0	2100	4150	2490	$22.8 \mathrm{f}^{-0.739}$
	（7）		43.0	1770	3800	2560	25．9f ${ }^{-0.817}$
	（8）		130.0	2530	5220	2680	$7.62 f^{-0.363}$
	（9）		610.0	2190	4350	2650	$5.01 f^{-0.497}$
	（11）		555.0	2730	5160	2640	$9.46 \mathrm{f}^{-0.920}$
標高－2040m	（11）		530.0	3020	5220	2620	0.250
地震基盤面	（12）		∞	3570	6180	2720	0.185

\square 地震動評価に用いる地下構造 モデルに採用

5．地震動評価に用いる地下構造モデルの設定

地震動評価に用いる地下構造モデル（減衰定数の設定）

■ 地震動評価に用いる地下構造モデルの減衰定数は，地震観測記録に基づく3号地盤の減衰定数の同定解析結果及び大深度ボ—リング孔におけるQ値測定結果を考慮し，地盤増幅特性が安全側になるように設定した。なお，8層以深の減衰定数も浅部と比較すると，設定自体は安全側の評価（減衰定数が小さいので地盤増幅特性に対する感度は小さい） となっている。

3号地下構造モデル						安全側に設定	
層番号	標高 （m）	$\begin{aligned} & \text { S波 } \\ & \text { 速度 } \\ & (\mathrm{m} / \mathrm{s}) \\ & \hline \end{aligned}$	P波速度 （ m / s ）	$\begin{gathered} \text { 密度 } \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	減衰定数 （\％）		
1		1520	3240	2500	$24.7 \mathrm{f}^{-0.733}$		$12.3 \mathrm{f}^{-0.733}$
2		1900	3860	2570	$13.1 \mathrm{f}^{-0.463}$		$6.53 \mathrm{f}^{-0.463}$
3		2100	4150	2490	$22.88^{-0.739}$		11．44 $\mathrm{f}^{-0.739}$
4		1770	3800	2560	$25.99^{-0.817}$		$13.0 f^{-0.817}$
5		2530	5220	2680	$7.62 f^{0.363}$		$3.81 \mathrm{f}^{-0.363}$
6		2190	4350	2650	$5.01 f^{-0.497}$		$2.51 \mathrm{f}^{-0.497}$
7		2730	5160	2640	$9.46 f^{0.920}$		$4.73 \mathrm{f}^{-0.920}$
8		3020	5220	2620	0.250		0.250
9		3570	6180	2720	0.185		0.185

減衰定数の設定結果

5．地震動評価に用いる地下構造モデルの設定

地震動評価に用いる地下構造モデル（モデル設定値）

■ 地震動評価に用いる地下構造モデルを以下のとおり設定した。なお，深部の物性値（モデ ルの網掛け箇所）は岩田•関口（2002）（6）で用いられている地下構造モデル※1の値を用い ている。

地震動評価に用いる地下構造モデル

※1 京都大学防災研究所地震予知センター鳥取地震観測所が震源決定に用いている地下構造モデルを参考に設定したモデルで，2000年鳥取県西部地震の震源インバージョン及び強震動シミュレーションに用いられており，強震動シミュレーション結果は観測記録と良く対応することが確認されている。
※2 fは振動数を表す。

5．地震動評価に用いる地下構造モデルの設定

地震動評価に用いる地下構造モデル（地盤増幅特性）

■ 地震動評価に用いる地下構造モデルの地盤増幅特性は，2号及び3号地下構造モデル の地盤増幅特性より大きくなり，敷地の地震動を安全側に評価する地下構造モデルを設定した。

地盤増幅特性（解放基盤表面／地震基盤面）の比較

5．地震動評価に用いる地下構造モデルの設定

地震動評価に用いる地下構造モデル（物性値の妥当性確認）

■ 地震動評価に用いる地下構造モデルから求めた理論位相速度と，微動アレイ観測記録 （西側アレイ）から求めた位相速度を比較すると，同程度となっていることから，地震動評価に用いる地下構造モデルの深さ 2 km 程度までの物性値は妥当と考えられる。

微動アレイ探査配置図

地震動評価に用いる地下構造モデル					
層番号	標高 (m)	層厚 (m)	S波 速度 $(\mathrm{m} / \mathrm{s})$	P波 速度 $(\mathrm{m} / \mathrm{s})$	密度 $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
1	-10	14	1520	3240	2500
2	-24	116	1900	3860	2570
3	-140	32	2100	4150	2490
4	-172	43	1770	3800	2560
5	-215	130	2530	5220	2680
6	-345	610	2190	4350	2650
7	-955	555	2730	5160	2640
8	-1510	530	3020	5220	2620
9	-2040	∞	3570	6180	2720

5．地震動評価に用いる地下構造モデルの設定

地震動評価に用いる地下構造モデル（減衰定数の保守性碓認）

■ 地震動評価に用いる地下構造モデルの地盤増幅特性は，南北方向の傾斜構造の影響を検討した以下の2次元地下構造モデルの地盤増幅特性（鉛直及び斜め入射）よりも大きくなって いるため，設定した地下構造モデルの地盤増幅特性は安全側の評価であることを確認した。

地盤増幅特性（解放基盤表面／地震基盤面）の比較

地震動評価に用いる地下構造モデルの設定のまとめ

－2号及び3号地下構造モデルの地盤増幅特性は同程度であるが，3号地下構造モデル の方が若干大きくなるため，地震動評価に用いる地下構造モデルの速度値等の物性値は，3号地下構造モデルの値を用いて設定した。
－地震動評価に用いる地下構造モデルの減衰定数は，地震観測記録に基づく3号地盤 の減衰定数の同定解析結果及び大深度ボーリング孔におけるQ値測定結果を考慮し，地盤増幅特性が安全側になるように設定した。
－地震動評価に用いる地下構造モデルから求めた理論位相速度と，微動アレイ観測記録から求めた位相速度を比較すると，同程度となることから，地震動評価に用いる地下構造モデルの深さ 2 km 程度までの物性値は妥当と考えられる。
－地震動評価に用いる地下構造モデルの地盤増幅特性は，南北方向の傾斜構造の影響を検討した2次元地下構造モデルの地盤増幅特性（鉛直及び斜め入射）よりも大きく なっているため，設定した地下構造モデルの地盤増幅特性は安全側の評価であること を確認した。
■ 地震動評価に用いる地下構造モデルの減衰定数を安全側に設定することにより，地盤増幅特性は十分な保守性を有していることから，2次元地下構造モデルの深部構造の モデル設定において不確かさがあるとしても，安全側に地震動を評価できるものと考え ている。
＞以上より，敷地全体の地震動を安全側に評価することができる地下構造モデルを設定 し，その妥当性を確認した。

6．まとめ

【敷地及び敷地周辺の地質•地質構造の調査】

■ 敷地周辺及び敷地近傍の地質調査結果より，敷地付近には第三紀中新世の成相寺層が分布し，北（日本海側）に傾斜している。
■ 文献調査等の結果より，敷地付近の成相寺層は，標高約 -900 m 以深まで分布するものと推定される。
－敷地内の地質調査結果より，敷地は，ほぼ東西方向の軸を持つ背斜構造の北側に位置し，敷地地盤を構成する成相寺層は北に緩やかに傾斜している。
■ 2号及び3号地盤の速度層区分より，敷地の東西方向の地下構造はほぼ水平成層であり，南北方向の地下構造は北に緩やかに傾斜していると考えられる。

【観測記録及び物理探査に基づく検討】

■ 原子炉建物基礎上端の地震観測記録による検討より，2号炉及び3号炉の原子炉建物の応答が同程度 であることから，それぞれの地盤の増幅特性に違いはないと考えられる。
－敷地地盤の地震観測記録による検討のうち，地震波の到来方向別による増幅特性の比較より，検討対象地震の到来方向は東と南の 2 方向となり，方向別で増幅特性に違いは見られないことから，敷地の地下構造は特異な構造ではないと考えられる。なお，検討対象地震が2方向に限定され，西と北からの観測記録はないが，西方向については，敷地の東西方向の地下構造がほぼ水平成層であることを踏まえると，東方向から到来する場合の増幅特性と違いはないと考えられる。一方，北方向については，北方向への傾斜構造を考慮した解析的な検討結果によると，南方向から到来する場合より北方向から到来する場合 の方が相対的に増幅特性が小さい。
－敷地地盤の地震観測記録による検討のうち，2号観測点及び3号観測点の解放基盤表面におけるはぎと り波の比較より，両者は同程度であることから，それぞれの地盤の増幅特性に違いはないと考えられる。
■ 敷地地盤の微動観測記録による検討より，H／Vスペクトル比の1秒以上の長周期側が各観測点で一様 にフラットであることから，敷地の深部地下構造は特異な構造ではないと考えられる。なお，H／Vスペクト ル比の0．25秒以下の短周期側が各観測点で異なるのは，表層（盛土•埋土）の影響によるものと考えられ る。

6．まとめ（2）

■ 反射法探査及びオフセットVSP探査による検討より，東西方向の反射面が地下深部までほぼ水平に連続 していることから，東西方向の地下構造は水平成層構造と考えられる。また，南北方向の反射面が北に向かって緩やかに傾斜していることから，南北方向の地下構造は北に傾斜していると考えられる。
■ 微動アレイ探査による検討より，西側及び東側アレイにおける速度構造の同定結果は概ね同程度の深さ に同程度の速度層が分布していることから，敷地及び敷地周辺の東西方向の地下構造は水平成層構造 と考えられる。

【傾斜構造を考慮した解析による検討】

■ 傾斜構造を考慮した2次元地下構造モデルとして，2号及び3号地盤の敷地内モデル，広域モデルに加え，敷地南方の背斜•向斜構造を考慮した広域モデルを設定し，また，2号地盤についてはドレライトを考慮し た敷地内モデル及び広域モデルを設定し，地震波の入射角の違いによる地盤増幅特性への影響を検討 した。その結果，全ての検討モデルにおいて，鉛直入射の地盤増幅特性が，斜め入射の地盤増幅特性と比較して，同程度またはそれ以上となり，斜め入射を考慮しても傾斜構造による特異な増幅傾向はみられ なかった。
■ 1次元地下構造モデルによる地盤増幅特性と，上記の2次元地下構造モデルの鉛直入射の地盤増幅特性を比較すると，全ての検討モデルにおいて，1 次元地下構造モデルの増幅特性が，2次元地下構造モ デルの増幅特性と同程度またはそれ以上となり，1次元と2次元の増幅傾向に違いはみられなかった。
■ 2次元地下構造モデルにRicker波を入射して，地震波の入射角の違いによる伝播特性への影響を検討す ると，全ての検討モデルにおいて，地盤の傾斜構造及び背斜•向斜構造等による特異な伝播傾向はみら れなかった。
－以上より，南北方向の傾斜構造が敷地の地震動評価に与える影響はほとんどないことを確認できた（結果的に保守的な評価となる）ことから，南北方向の地下構造は水平成層構造で近似できると考えられる。

【地下構造モデルの検討】
－敷地の傾斜構造を考慮した解析による検討を踏まえ，2号及び3号観測点における地震観測記録及び物理探査結果に基づき，2号及び3号地下構造モデルを設定した。
■ 2号及び3号地下構造モデルを用いた2000年鳥取県西部地震の地盤応答解析結果と観測記録を比較す ると，同程度となることから，2号及び3号地下構造モデルは妥当と考えられる。
【地震動評価に用いる地下構造モデルの設定】
■ 2号及び3号地下構造モデルの地盤増幅特性は同程度であるが，3号地下構造モデルの方が若干大きく なるため，地震動評価に用いる地下構造モデルの速度値等の物性値は，3号地下構造モデルの値を用 いて設定した。
■ 地震動評価に用いる地下構造モデルの減衰定数は，地震観測記録に基づく3号地盤の減衰定数の同定解析結果及び大深度ボーリング孔におけるQ値測定結果を考慮し，地盤増幅特性が安全側になるように設定した。
－地震動評価に用いる地下構造モデルから求めた理論位相速度と，微動アレイ観測記録から求めた位相速度を比較すると，同程度となることから，地震動評価に用いる地下構造モデルの深さ 2 km 程度までの物性値は妥当と考えられる。
■ 地震動評価に用いる地下構造モデルの地盤増幅特性は，南北方向の傾斜構造の影響を検討した2次元地下構造モデルの地盤増幅特性（鉛直及び斜め入射）よりも大きくなっているため，設定した地下構造モ デルの地盤増幅特性は安全側の評価であることを確認した。
■ 地震動評価に用いる地下構造モデルの減衰定数を安全側に設定することにより，地盤増幅特性は十分 な保守性を有していることから，2次元地下構造モデルの深部構造のモデル設定において不確かさがあ るとしても，安全側に地震動を評価できるものと考えている。
■ 以上より，敷地全体の地震動を安全側に評価することができる地下構造モデルを設定し，その妥当性を確認した。

6．まとめ（4）

【今後の取り組み】

■ 今後は，物理探査において掘削した大深度ボーリング孔に地震計を設置して，地震観測の充実を図 る。そして，その地震記録を用いて地下深部からの地盤増幅特性を評価して，設定した地下構造モデ ルの検証を行い，敷地の地震動評価の精度向上に努める。

参 考

参考1．速度層の代表値設定方法 ．．．．．．．．．．．．．．．．．．．．．．．．． 158
参考2．地質構造と速度構造の関係 ．．．．．．．．．．．．．．．．．．．．．． 173
参考3．表層部分の高速度層 1 （の影響検討 ．．．．．．．．．．．．．． 193

参考1．速度層の代表値設定方法

【参考1】2号及び3号地盤の速度値設定方法

■ 速度値設定方法について定められた規準はないことから，敷地の地質•地質構造，PS検層等のデー夕に基づき，以下の方法により各速度層の速度値（代表値）を設定した。
■ 2号及び3号地盤の速度値設定方法について，代表値の精度の比較及び地盤増幅特性の比較によ り，妥当性を検証した。

【参考1】2号地盤の各層の速度値（S波速度）

■ 1 層は地表弾性波探査等の結果に基づいて速度値（代表値）を設定した。
■ 10m間隔で算定した平均速度値に基づき，速度値が類似する区間を1つの速度層 にグルーピングし，グルーピングした速度層毎に速度値（代表値）を設定した。

Vs の深度方向の平均値 $(\mathrm{km} / \mathrm{s})$

E．L（m）	No． 306	No． 308	No． 309	No． 310	No． 316	No． 359	No． 360	No． 361	No． 362	No． 363	No． 364	No． 365	No． 366	No． 367	No． 368	$\overline{\mathrm{Vs}}$	平均値	代表値	速度層
	1.1	0.9	1.1	0.5	0.85	－	1.2	0.7	0.9	－	1.0	0.9	0.9	1.2	－	0.94	0.94	0.9	2 層
－10－	1.4	1.6	1.5	1.6	－	1.4	－	1.5	1.5	1.5	1.4	1.5	1.5	－	1.5	1.49			
－10	1.4	1.6	1.5	1.6	1.5	1.4	1.5	1.5	1.5	1.5	1.4	1.5	1.5	1.5	1.5	1.49			
－20－	1.4	1.6	1.5	1.54	1.5											1.50			
－30	1.58	1.6	1.68	1.82	1.58											1.65	1.60	1.6	3 魯
50	1.72	1.48	1.73	2.0	1.6											1.70			
$-50-$	2.0	1.32	2.0	1.9	1.72											1.78			
－60	2.0	1.6	2.0	2.1	2.1											1.96			
－70 -8	2.0	1.6	2.0	2.1	2.1											1.96			
-80 -90	2.0	1.6	2.0	2.1	2.1											1.96	1.95	1.95	4 層
－100	2.0	1.6	2.0	2.1	1.93														
－100－	2.0				1.9														
－110－	2.2				1.87											2.03	2.00	2.0	5 層
	2.2				1.51							1				1.85			
－140	2.2				1.9							1				2.05			
$\begin{aligned} & -140 \\ & -150 \end{aligned}$	2.2				1.9				－${ }^{-1}$							2.05			
－160－	2.2				1.9		$\begin{aligned} & \text { No. } 308=308 \\ & \text { No. } 202 \text { ' } \\ & \text { No. } 303 \end{aligned}$		No． 359	No． 309	No． 31					2.05			
	2.5				2.0				－	\％ris						2.25	2.37	2.35	6 層
	2.5				2.2								$\underline{.}$			2.35			
	2.5															2.50			

【参考1】2号地盤の各層の速度値（P波速度）

P 波の速度値（代表値）についても， S 波と同様の考え方に基づき設定した。

Vp の深度方向の平均値 $(\mathrm{km} / \mathrm{s})$

E．L（m）	No． 306	No． 308	No． 309	No． 310	No． 316	No． 359	No． 360	No． 361	No． 362	No． 363	No． 364	No． 365	No． 366	No． 367	No． 368	$\overline{\mathrm{Vp}}$	平均値	代表値	速度層
	2.5	2.2	2.0	1.8	1.8	1.5	2.7	2.0	2.0	－	2.0	1.8	2.5	2.8	－	2.12	2.12	2.1	2 層
	3.26	3.4	3.5	3.7	－	3.5	－	3.5	3.5	3.5	3.5	3.5	3.5	－	3.5	3.48	3.58	3.6	3 層
－10	3.5	3.4	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.50			
－ 20	3.5	3.4	3.5	3.55	3.5											3.49			
0	3.5	3.6	3.86	3.69	3.5											3.63			
－50	3.59	3.56	3.91	3.9	3.5											3.69			
50	3.8	3.24	4.0	3.78	3.57											3.67			
－70	3.8	3.8	4.0	4.2	3.8											3.92	3.99	4.0	4 層
－80	3.8	3.8	4.0	4.2	3.8											3.92			
－80	4.1	3.8	4.0	4.2	3.8											3.98			
－100	4.4	3.8	4.0	4.2	3.8		\qquad No． 363 － 0.30 .310									4.04			
	4.4				3.8									祀这掦		4.10			
	4.4				3.74											4.07	4.05	4.05	5 層
－120	4.4				3.15											3.77			
$\begin{aligned} & -130 \\ & -140 \end{aligned}$	4.4				4.0											4.20			
－150	4.4				4.0											4.20			
－160	4.4				3.64											4.02			
－170	5.3				3.51											4.40	4.95	4.95	6 層
	5.3				4.48								＋			4.89			
－190	5.3				5.2											5.25			
－200	5.3				5.2											5.25			

【参考1】3号地盤の各層の速度値（S波速度）

■（1）層は，主として埋土•盛土などの被覆層から成ることから，盛土材料による地表弾性波探査結果に基づいて速度値（代表値）を設定した。
－（2）層は，下図青枠に示す6本のボーリング孔のPS検層結果に基づき，速度値（代表値）を設定した。

【参考1】3号地盤の各層の速度値（S波速度）

■ 深部（3）～（7）層）の速度値（代表値）は，原子炉建物範囲の5本のPS検層の結果に基づ き，各孔の層厚と速度値の加重平均により設定した。

S波速度結果

速度層	No． 332		No． 336		No． 337		No． 338		No． 344		代表値
	層厚 （m）	$\underset{(\mathrm{km} / \mathrm{s})}{\mathrm{S}_{\text {波 }}}$	$\underset{(\mathrm{m})}{\text { 層厚 }}$	$\underset{(\mathrm{km} / \mathrm{s})}{\mathrm{S} \text { 波 }}$	層厚	$\underset{(\mathrm{km} / \mathrm{s})}{\mathrm{S}_{\mathrm{m}_{\mathbf{2}}}}$	層厚	$\underset{(\mathrm{km} / \mathrm{s})}{\mathrm{S} \text { 波 }}$	層厚	$\underset{(\mathrm{km} / \mathrm{s})}{\mathrm{S}_{\text {波 }}}$	$\underset{(\mathrm{km} / \mathrm{s})}{\mathrm{S} \text { 波 }}$
（3）層	16	0.72	12	0.89	12	1.09	10	0.95	10	1.28	0.96
（4）層	42	1.60	32	1.33	32	1.44	32	1.46	32	1.73	1.52
（5）層	116	1.98	116	1.86	116	1.91	118	1.92	114	1.84	1.90
（6）層	34	1.92	34	2.27	32	2.13	32	2.08	30	2.09	2.10
（7）層	24	1.84	18	1.96	44	1.83	32	1.83	28	1.42	1.77

【参考1】3号地盤の各層の速度値（P波速度）

■ P波の速度値（代表値）についても， S 波と同様の考え方に基づき設定した。

P波速度結果

速度層	NS方向		EW方向		代表値
	測定長 (m)	P波 $(\mathrm{km} / \mathrm{s})$	測定長 (m)	P波 $(\mathrm{km} / \mathrm{s})$	P波 $(\mathrm{km} / \mathrm{s})$
（1）層	6	0.54	5	0.50	0.52

P波速度結果

速度層	No． 128		No． 129		No． 130		No． 305		No． 324		No． 336		代表値
	層厚 （m）	$\underset{(\mathrm{km} / \mathrm{s})}{\mathrm{P}_{\text {波 }}}$	層厚 （m）	$\underset{(\mathrm{km} / \mathrm{s})}{\stackrel{\text { P波 }}{ }}$	層厚 （m）	$\underset{(\mathrm{km} / \mathrm{s})}{\stackrel{\mathrm{P} \text { 波 }}{ }}$	層厚 （m）	$\underset{(\mathrm{km} / \mathrm{s})}{\stackrel{\text { P波 }}{ }}$	層厚 （m）	$\underset{(\mathrm{km} / \mathrm{s})}{\mathrm{P}_{\text {波 }}}$	層厚 （m）	$\underset{(\mathrm{km} / \mathrm{s})}{\mathrm{P}_{\text {波 }}}$	$\begin{gathered} \text { P波 } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$
（2） 1 層	18	0.92	6	2.13	4	2.62	14	2.71	24	1.67	12	1.29	1.71

【参考1】3号地盤の各層の速度値（P波速度）

■ P波の速度値（代表値）についても， S 波と同様の考え方に基づき設定した。

\qquad
P波速度結果

速度層	No． 332		No． 336		No． 337		No． 338		No． 344		代表値 P波 （km／s）
	$\begin{gathered} \text { 層厚 } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \mathrm{P} \text { 波 } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	層厚 （m）	P波 $(\mathrm{km} / \mathrm{s})$	層厚 (m)	$\begin{gathered} \mathrm{P} \text { 波 } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \text { 層厚 } \\ (\mathrm{m}) \end{gathered}$	$\underset{\left(\mathrm{km} \mathrm{p}_{\mathrm{c}}^{\mathrm{s})}\right.}{ }$	$\begin{gathered} \text { 層厚 } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \text { P波 } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	
（3）層	16	1.83	12	2.45	12	2.29	10	2.05	10	2.93	2.27
（4）層	42	3.11	32	3.30	32	3.39	32	3.33	32	3.11	3.24
（5）層	116	3.94	116	3.89	116	3.93	118	3.87	114	3.68	3.86
（6）層	34	4.16	34	4.48	32	4.28	32	3.94	30	3.83	4.15
（7）層	24	3.86	18	4.01	42	3.88	34	3.85	30	3.45	3.80

【参考1】2号及び3号地盤における速度値の残差の比較（S波速度）

■ 原子炉建物範囲の5本のPS検層の結果に基づく速度層毎の速度値と，2号及び3号地盤 のそれぞれの代表値との残差について比較した結果，両者は概ね同等であることを確認し た。

速度層	No． 306	No． 308	No． 309	No． 310	No． 316	代表値
	S波（km／s）	s波（km／s）	s波（km／s）	s波（km／s）	s波（km／s）	s波（km／s）
2 2層	1.00	0.90	0.55	0.50	0.85	0.9
3層	1.38	1.50	1.52	1.70	1.46	1.6
4）層	2.00	1.60	2.00	2.05	1.90	1.95
5 5層	2.20	－	－	－	1.95	2.0
6 6層	2.50	－	－	－	－	2.35

3号S波速度結果

速度層	No．332	No．336	No．337	No．338	No．344	代表値
	s波 $(\mathrm{km} / \mathrm{s})$	s 波 $(\mathrm{km} / \mathrm{s})$	s s波 $(\mathrm{km} / \mathrm{s})$			
（3）層	0.72	0.89	1.09	0.95	1.28	0.96
（4）層	1.60	1.33	1.44	1.46	1.73	1.52
（5）層	1.98	1.86	1.91	1.92	1.84	1.90
（6）層	1.92	2.27	2.13	2.08	2.09	2.10
（7）層	1.84	1.96	1.83	1.83	1.42	1.77

【参考1】2号及び3号地盤における速度値の残差の比較（P波速度）

■ S波と同様の考えに基づき比較した結果，両者は概ね同等であることを確認した。

2号P波速度結果

速度層	No． 306	No． 308	No． 309	No． 310	No． 316	代表値
	P波（km／s）	P波（km／s）	P波（km／s）	P波（km／s）	P波（km／s）	P波（km／s）
2 層	2.50	2.04	2.00	1.80	1.80	2.1
3 層	3.43	3.40	3.63	3.71	3.50	3.6
4 層	4.02	3.80	4.00	4.11	3.65	4.0
5 層	4.40	－	－	－	3.81	4.05
6 層	5.30	－	－	－	5.20	4.95

3号P波速度結果

速度層	No．332	No．336	No．337	No．338	No．344	代表値
	P波 $(\mathrm{km} / \mathrm{s})$	P 波 $(\mathrm{km} / \mathrm{s})$	P P皮 $(\mathrm{km} / \mathrm{s})$	P 波 $(\mathrm{km} / \mathrm{s})$	P 波 $(\mathrm{km} / \mathrm{s})$	P波 $(\mathrm{km} / \mathrm{s})$
（3）層	1.83	2.45	2.29	2.05	2.93	2.27
（4）層	3.11	3.30	3.39	3.33	3.11	3.24
（5）層	3.94	3.89	3.93	3.87	3.68	3.86
（6）層	4.16	4.48	4.28	3.94	3.83	4.15
（7）層	3.86	4.01	3.88	3.85	3.45	3.80

※3号地盤の（1），（2）層はそれぞれ，地表弾性波探査結果及び（2）層が碓認されている6本のボーリング結果 により設定している。

【参考1】3号速度値の設定方法を用いた2号速度値の算定（S波速度）

－2号速度値について，3号と同様に，原子炉建物範囲の5本のPS検層の結果に基づき，各速度層毎に各孔の層内速度と層厚を用いた加重平均により算定した結果，算定した速度値と代表値は概ね同等であること，また，残差についても概ね同等であることを確認した。

2号S波速度結果

速度層	No． 306		No． 308		No． 309		No． 310		No． 316	
	$\begin{aligned} & \hline \text { 層厚 } \\ & (\mathrm{m}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\text {波 }}^{(\mathrm{km} / \mathrm{s})} \end{gathered}$	$\begin{aligned} & \hline \text { 層厚 } \\ & (\mathrm{m}) \end{aligned}$	$\begin{gathered} \mathrm{S} \text { 波 } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	$\begin{aligned} & \hline \text { 層厚 } \\ & (\mathrm{m}) \end{aligned}$	$\begin{gathered} \mathrm{S} \text { 波 } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	$\begin{aligned} & \text { 層厚 } \\ & (\mathrm{m}) \end{aligned}$		$\begin{gathered} \text { 層厚 } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} s_{\text {波 }}(\mathrm{km}) \end{gathered}$
2 層	6	1.00	12	0.90	8	0.55	8	0.50	4	0.85
3 層	49	1.38	50	1.50	50	1.52	60	1.70	52	1.46
4 層	63	2.00	36	1.60	44	2.00	38	2.05	69	1.90
5 層	50	2.20	－		－		－		50	1.95
6 層	35	2.50	－		－		－		－	

速度層	算定した速度値	代表値
	s 波 $(\mathrm{km} / \mathrm{s})$	s 波 $(\mathrm{km} / \mathrm{s})$
2層	0.75	0.9
3層	1.52	1.6
4 層	1.92	1.95
5 層	2.08	2.0
6 層	2.50	2.35

【参考1】3号速度値の設定方法を用いた2号速度値の算定（P波速度）

■ S波と同様の考えに基づき比較した結果，両者は概ね同等であることを確認した。

2号P波速度結果

速度層	No． 306		No． 308		No． 309		No． 310		No． 316	
	$\begin{aligned} & \text { 層厚 } \\ & (\mathrm{m}) \end{aligned}$	$\begin{gathered} \text { P波 } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \text { 層厚 } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \mathrm{P} \text { 波 } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	層厚 (m)	$\begin{gathered} \mathrm{P} \text { 波 } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	$\begin{aligned} & \text { 層厚 } \\ & (\mathrm{m}) \end{aligned}$	$\begin{gathered} \text { P波 } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$	層厚 （m）	$\begin{gathered} \text { P波 } \\ (\mathrm{km} / \mathrm{s}) \end{gathered}$
2 層	6	2.50	12	2.04	8	2.00	8	1.80	4	1.80
3 層	49	3.43	50	3.40	50	3.63	60	3.71	52	3.50
4 層	63	4.02	36	3.80	44	4.00	38	4.11	69	3.65
5 層	50	4.40	－		－		－		50	3.81
6 層	35	5.30	－		－		－		22.4	5.20

速度層	算定した速度値	代表値
	P波 $(\mathrm{km} / \mathrm{s})$	P波 $(\mathrm{km} / \mathrm{s})$
2層	2.03	2.1
3層	3.54	3.6
4層	3.90	4.0
5 層	4.11	4.05
6層	5.26	4.95

【参考1】3号速度値の設定方法を用いた2号速度値による地盤増幅特性

■ 2号地下構造モデルの速度値を3号と同様の方法で算定し，その地盤増幅特性を評価す ると，現状の2号地下構造モデルの増幅特性と同程度となることを確認した。

2号地下構造モデル

標高 $-10 \mathrm{~m}$	$\begin{gathered} \text { 層厚 } \\ (\mathrm{m}) \end{gathered}$	S波 速度 $(\mathrm{m} / \mathrm{s})$	P波速度 $(\mathrm{m} / \mathrm{s})$	$\begin{gathered} \text { 密度 } \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	減衰定数 （\％）
－60m	50	1600	3600	2500	$46.0 f^{-0.987}$
－110m	50	1950	4000	2500	$27.3 \mathrm{f}^{-0.539}$
－160m	50	2000	4050	2650	$48.4 f^{-0.582}$
$\underline{-233.5 m}$	73.5	2350	4950	2850	$7.62 f^{-0.363}$
	－	2530	5220	2680	$7.62 f^{-0.363}$

2号地下構造モデル（3号と同様の方法で速度値算定）

標高 -10 m	層厚 (m)	S波 速度 $(\mathrm{m} / \mathrm{s})$	P波 速度 $(\mathrm{m} / \mathrm{s})$	密度 $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	減衰定数 $(\%)$
-60 m	50	1520	3540	2500	$46.0 f^{-0.987}$
-110 m	50	1920	3900	2500	$27.3 \mathrm{f}^{-0.539}$
-160 m	50	2080	4110	2650	$48.4 \mathrm{f}^{-0.582}$
-233.5 m	73.5	2500	5260	2850	$7.62 f^{-0.363}$
	-	2530	5220	2680	$7.62 f^{-0.363}$

2号地下構造モデル
2号地下構造モデル（3号と同様の方法で速度値算定）

【参考1】2号地盤の各層の速度値（S波及びP波速度）

■ 原子炉建物範囲のPS検層の結果に基づく各層のデータの比較結果

参考2．地質構造と速度構造の関係

【参考2】地質構造と速度構造の関係に係る文献調査結果

【狐崎（2001）${ }^{\text {（7）】 }}$

- 亀裂が多いほど，風化しているほどVpは低下する。
- 固結の度合の高まりや間隙率の低下のため，深度が深いほどVp，Vsが高まる。
- 風化していない（新鮮な）岩石であれば，構成鉱物の弾性も，岩石の弾性に反映される。

【物理探査学会（2008）${ }^{(8)}$ 】

- 異なる地層でも速度に差がない場合は，同じ速度層に区分される。
- 硬質岩が風化した風化岩，新第三紀堆積軟岩，火山地域に分布する低溶結の火砕流堆積物や固結度の低い自破砕状溶岩などの分布域では，地層が変化していても同じ速度を示す場合があり，速度のみで地層区分ができない。

風化の影響を受けない深部の新鮮な岩盤では，弾性波速度は，岩種を反映する傾向にあ るが，土被りが小さく，風化，亀裂の影響を受けやすい浅部においては，速度構造は必ず しも地質構造を反映するものではない。

【参考2】2号地盤の岩相区分との比較（南北断面）

【参考2】2号地盤の岩級区分との比較（南北断面）

【参考2】2号地盤の岩相区分との比較（東西断面）

【参考2】2号地盤の岩級区分との比較（東西断面）

【参考2】3号地盤の岩相区分との比較（南北断面）

【参考2】3号地盤の岩級区分との比較（南北断面）

【参考2】3号地盤の岩相区分との比較（東西断面）

【参考2】3号地盤の岩級区分との比較（東西断面）

【参考2】2号地盤の速度層区分の妥当性（追加ボーリング位置図）

[^3]【参考2】2号地盤の速度層区分の妥当性（追加ボーリングのPS検層結果）

【参考2】2号地盤の速度層区分の妥当性（追加ボーリングのPS検層結果）

－追加ボーリングにおけるPS検層の結果，ドレライト中のVpは $4 \mathrm{~km} / \mathrm{s}$ 程度， Vss^{2} は $2 \mathrm{~km} / \mathrm{s}$ 程度であり，速度層の 4層及び5 5 層に対応していることから，2号地盤の速度層区分と整合している。

【参考2】2号地盤の速度層区分の妥当性（ドレライトの岩石試験結果）

－ドレライトにおける岩石試験の結果，弾性波速度は深度が深くなるにしたがって増加しており，速度層区分と整合 している。

【参考2】2号地盤の速度層区分の妥当性（ドレライトのRQD）

【参考2】2号地盤の速度層区分の妥当性

【2号地盤の速度層区分の妥当性検討結果】

－風化の影響を受けない深部の新鮮な岩盤では，弾性波速度は，岩種を反映する傾向にあるが，土被りが小さく，風化，亀裂の影響を受けやすい浅部においては，速度構造は必ずしも地質構造を反映するものではない。
－追加ボーリングにおけるPS検層の結果，ドレライトのVpは4km／s程度，Vsは2km／s程度であり，速度層の4層及び5層に対応していることから，2号地盤の速度層区分と整合している。
－ドレライトにおける岩石試験等の結果，同じドレライト中でも弾性波速度及びRQDは深度が深く なるにしたがって増加しており，狐崎（2001）（7）等の文献及び2号地盤の速度層区分と整合して いる。
－以上のことから， 2 号地盤の速度層断面図は妥当であると考えられる。

【参考2】敷地に分布する鍵層（1）

【参考2】敷地に分布する鍵層（2）

【参考2】鍵層の連続性

－フローユニットの分布等に基づき敷地の地質構造を検討した結果，下部頁岩部層中の同一層準は，2号炉エリア及び3号炉エリアに連続的に分布すると考えられる。

【参考2】3号地盤との整合性

－2号地盤と3号地盤の交点部において，地質構造•速度構造はいずれ も整合的である。

速度値（代表値）

3号炉		2号炉	
$\begin{array}{\|l\|l\|} \hline(1) \\ \text { 層 } \end{array}$	$\begin{aligned} & V_{p}=0.52 \\ & V_{s}=0.27 \end{aligned}$	$\begin{aligned} & 1 \\ & \hline \text { 層 } \end{aligned}$	$\begin{aligned} & V_{\mathrm{p}}=0.8 \\ & V_{\mathrm{s}}=0.25 \end{aligned}$
$\begin{array}{\|l\|l\|} \hline(2) \\ \text { 層 } \end{array}$	$\begin{aligned} & V_{\mathrm{p}}=1.71 \\ & \mathrm{~V}_{\mathrm{s}}=0.62 \end{aligned}$	2	$\mathrm{Vp}=2.1$
$\begin{aligned} & \text { (3) } \\ & \text { 層 } \end{aligned}$	$\begin{aligned} & V p=2.27 \\ & V s=0.96 \end{aligned}$	層	$\mathrm{V}_{\mathrm{s}=0.9}$
$\begin{aligned} & \text { (4) } \\ & \text { 層 } \end{aligned}$	$\begin{aligned} & V_{p}=3.24 \\ & V_{s}=1.52 \end{aligned}$	3	$\mathrm{Vp}=3.6$
$\begin{aligned} & \text { (55 } \\ & \text { 層 } \end{aligned}$	$\begin{aligned} & V p=3.86 \\ & V s=1.90 \end{aligned}$	層	$\mathrm{Vs}=1.6$
$\begin{array}{\|l\|} \hline \text { (6) } \\ \text { 層 } \end{array}$	$\begin{aligned} & V_{p}=4.15 \\ & V_{s}=2.10 \end{aligned}$	層	$\begin{gathered} V_{\mathrm{p}}=4.0 \\ \mathrm{~V}_{\mathrm{s}}=1.95 \end{gathered}$
$\begin{array}{\|l\|} \hline(7) \\ \text { 層 } \end{array}$	$\begin{aligned} & V_{p}=3.80 \\ & V_{s}=1.77 \end{aligned}$	5	$\begin{gathered} V_{\mathrm{p}}=4.05 \\ \mathrm{~V}_{\mathrm{s}}=2.0 \end{gathered}$

参考3．表層部分の高速度層（1）の影響検討

【参考3】表層部分の高速度層（1）の影響検討

■ 3号地盤の地質断面図に見られる表層部分の高速度層（1）は，その層厚が比較的薄く， 3号炉心周辺ボーリングのPS検層結果には現れていないが，比較的高い速度値を示す可能性があるため，その影響を検討する。

【参考3】表層部分の高速度層（1）の影響検討

■ 高速度層 1 は， 3 号地盤の地質断面図では概ね10数m程度の層厚で分布していること から，層厚 20 m の高速度層を設定し，地盤増幅特性に与える影響を検討する。

3号地下構造モデル

層番号	標高 （m）	層厚 （m）	S波 速度 （m／s）	P波速度 （m／s）	$\begin{gathered} \text { 密度 } \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	減衰定数（\％）	
						hs	hp
1		14.0	1520	3240	2500	$24.7 \mathrm{f}^{-0.733}$	$62.0 \mathrm{f}^{-0.733}$
2		116.0	1900	3860	2570	$13.1 \mathrm{f}^{-0.463}$	$26.9 \mathrm{f}^{-0.463}$
3		32.0	2100	4150	2490	$22.8 f^{-0.739}$	$33.8 \mathrm{f}^{-0.739}$
4		43.0	1770	3800	2560	$25.9 \mathrm{f}^{-0.817}$	$27.8 \mathrm{f}^{-0.817}$
5		130.0	2530	5220	2680	$7.62 f^{-0.363}$	$8.53 \mathrm{f}^{-0.363}$
6		610.0	2190	4350	2650	$5.01 f^{-0.497}$	$5.40 \mathrm{f}^{-0.497}$
7		555.0	2730	5160	2640	$9.46 f^{-0.920}$	$9.67 \mathrm{f}^{-0.920}$
8		530.0	3020	5220	2620	0.25	0.13
9		∞	3570	6180	2720	0.19	0.09

f ：振動数

高速度層（1）を考慮したモデル

層番号	標高 （m）	層厚 （m）	S波速度 （ m / s ）	P波速度 （ m / s ）	$\begin{gathered} \text { 密度 } \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	減衰定数（\％）	
						hs	hp
1		14.0	1520	3240	2500	$24.7 f^{-0.733}$	$62.0 f^{-0.733}$
2－1		20.0	2270 ＊2	4680 ＊2	2570	$13.1 f^{-0.463}$	$26.9 \mathrm{f}^{-0.463}$
2－2		96.0	1900	3860	2570	$13.1 \mathrm{f}^{-0.463}$	$26.9 \mathrm{f}^{-0.463}$
3		32.0	2100	4150	2490	$22.8 \mathrm{f}^{-0.739}$	$33.8 \mathrm{f}^{-0.739}$
4		43.0	1770	3800	2560	$25.9 \mathrm{f}^{-0.817}$	$27.8 \mathrm{f}^{-0.817}$
5		130.0	2530	5220	2680	$7.62 f^{-0.363}$	$8.53 \mathrm{f}^{-0.363}$
6		610.0	2190	4350	2650	$5.01 \mathrm{f}^{-0.497}$	$5.40 f^{-0.497}$
7		555.0	2730	5160	2640	$9.46 f^{-0.920}$	$9.67 f^{-0.920}$
8		530.0	3020	5220	2620	0.25	0.13
9		∞	3570	6180	2720	0.19	0.09

[^4]
【参考3】表層部分の高速度層（1）の影響検討

■ 高速度層（1）を考慮した3号地下構造モデルの地盤増幅特性は，3号地下構造モデルの増幅特性と同程度となり，地震動評価に用いる地下構造モデルの増幅特性より小さい。

- 3号地下構造モデル
- —高速度層（1）を考慮した3号地下構造モデル
- —地震動評価に用いる地下構造モデル

地盤増幅特性の比較
（1）島根県地質図説明書編集委員会編（1985）：島根県の地質，島根県
（2）鹿野和彦•吉田史郎（1985）：境港地域の地質．地域地質研究報告（5万分の1地質図幅），地質調査所
（3）鹿野和彦•中野俊（1986）：恵曇地域の地質．地域地質研究報告（5万分の1地質図幅），地質調査所
（4）狐崎長琅•後藤典俊•小林芳正•井川猛•堀家正則•斉藤徳美•黒田徹•山根一修•奥住宏一 （1990）：地震動予測のための深層地盤P•S波速度の推定，自然災害科学
（5）Ludwig W．J．，J．E．Nafe and C．L．Drake（1970）：Seismic Refraction，The sea，vol．4，edited by Maxwell，A．，Wiley InterScience，New York
（6）岩田知孝•関口春子（2002）：2000年鳥取県西部地震の震源過程と震源域強震動，月刊地球／号外
（7）狐崎長琅（2001）：応用地球物理学の基礎，古今書院
（8）社団法人 物理探査学会（2008）：新版 物理探査適用の手引き — 土木物理探査マニュア ル2008－

[^0]: H／Vスペクトル比（B地点：標高＋8m，C地点：標高＋8．5m）

[^1]: 炉心及び炉心周辺（モデル上端）の加速度波形（ 0° 入射）

[^2]: 炉心及び炉心周辺（モデル上端）の加速度波形（ 0° 入射）

[^3]: －原子炉建物基礎地盤（南北断面）の南側で実施したボーリング調査結果も踏まえ，ドレライト中の速度構造について追加検討を実施した。

[^4]: ※ 1 3号炉心位直における高速度層（1）上端
 ※2 ボーリングNo．348の値

